
SystemImager® v4.1.6 Manual

Andrea Righi
Ari Jort

Austin Gonyou
Ben Spade

Brian Elliott Finley
Curtis Zinzilieta

Dann Frazier
Denise Walters

Greg Pratt
Jason R. Mastaler

Josh Aas

SystemImager® v4.1.6 Manual
by
Andrea Righi
Ari Jort
Austin Gonyou
Ben Spade
Brian Elliott Finley
Curtis Zinzilieta
Dann Frazier
Denise Walters
Greg Pratt
Jason R. Mastaler
Josh Aas

Published $Date: 2008-02-03 16:15:06 +0100 (Sun, 03 Feb 2008) $

SystemImager was created by Brian Elliott Finley. The current maintainer and team lead of the project is Andrea
Righi.

SystemImager is software that automates Linux installs, software distribution, and production deployment.
SystemImager makes it easy to do automated installs (clones), software distribution, content or data distribution,
configuration changes, and operating system updates to your network of Linux machines. You can even update from
one Linux release version to another.

It can also be used to ensure safe production deployments. By saving your current production image before updating
to your new production image, you have a highly reliable contingency mechanism. If the new production enviroment
is found to be flawed, simply roll-back to the last production image with a simple update command.

Some typical environments include: high performance clusters, Internet server farms, database server farms,
computer labs, and corporate desktop environments.

Be sure to view the CREDITS file for a listing of other people who have contributed code or documentation that has
been incorporated into SystemImager. Many thanks go to these people, as their relentless pursuit in the discovery
bugs and the occasional code contribution are invaluable.

Trademark Notices

SystemImager® is a registered trademark of Brian Finley.

Linux® is a registered trademark of Linus Torvalds.

Debian® is a registered trademark of Software in the Public Interest, Inc.

Red Hat® is a registered trademark of Red Hat, Inc. in the United States and other countries.

Solaris® is a registered trademark of Sun Microsystems, Inc.

Table of Contents
1. Introduction to SystemImager® ..1

1.1. SystemImager Overview...1
1.2. Who Should Use This Guide ..1
1.3. How SystemImager Works..1

1.3.1. Supported Distributions..2
1.3.2. System Requirements ...2

1.4. Glossary of Terms ...3

2. Installing SystemImager ...6
2.1. How Does it Work? ...6
2.2. Obtaining SystemImager...6
2.3. Selecting A Machine To Use As An Image Server...6
2.4. Installing an Image Server ..6
2.5. Selecting A Machine To Use As A Golden Client..8
2.6. Creating an Image on the Golden Client...9
2.7. Installing SystemImager Client Software on a Golden Client ..9
2.8. Creating an Image from scratch ..9
2.9. Upgrading SystemImager ...10

2.9.1. Regenerating autoinstallscripts...10
2.9.2. Migrating Customizations of the /etc/systemimager/rsyncd.conf file to SystemImager

3.0.0...10
2.9.3. Regenerating boot media ..10
2.9.4. What happened to the binary tarballs? ...11

3. Using SystemImager..12
3.1. Installation Procedures Overview ...12

3.1.1. Detailed Installation Instructions..12
3.1.2. SystemImager Tools ...20

3.1.2.1. the si_prepareclient command ...20
3.1.2.2. The si_getimage command..20
3.1.2.3. Autoinstall scripts ..21
3.1.2.4. The si_addclients and si_clusterconfig commands..22
3.1.2.5. Additional Installation Information ...22
3.1.2.6. How to Update an Image ...23

4. HOWTO Use BitTorrent for peer-to-peer Installs..25
4.1. Install SystemImager v3.7.4 or higher. ...25
4.2. Configure the BitTorrent transport on the image server. ...25
4.3. Configure the clients to use the BitTorrent transport. ...26
4.4. Important notes ...27
4.5. A Detailed Walk Through the Process ..27
4.6. See also ...28

5. HOWTO Use Flamethrower for Multicast Installs ..29
5.1. Install SystemImager v3.2.x or higher ..29
5.2. Install the Flamethrower Package and its Dependencies ..29
5.3. Run si_getimage, si_mvimage, or si_cpimage..29
5.4. Start up your Flamethrower daemon...29

iii

5.5. Tell your autoinstall clients to use Flamethrower ...30
5.6. Autoinstall your clients!..30
5.7. A Detailed Walk Through the Process ..30
5.8. See also ...31

6. HOWTO Use OpenSSH for Secure Installs...32
6.1. Using OpenSSH for Secure Installs (requires SystemImager v3.8.x or higher).......................32
6.2. Image server configuration..32
6.3. Client-driven approach..32
6.4. Configure the clients to use SSH transport (client-driven) ...33
6.5. Server-driven approach ...33
6.6. Configure the clients to use the SSH transport (server-driven)...34
6.7. Wait that the clients become ready to accept SSH connection ...34

7. Monitoring clients installation with SystemImager..35
7.1. Overview ...35
7.2. Setting up the monitor server ..35
7.3. Enabling clients to send monitoring data ..35
7.4. Troubleshooting ..36

7.4.1. Clients do not appear ..36
7.4.2. I’ve not a X server to see si_monitortk interface..36

8. HOWTO Distribute configuration file across a SystemImager cluster...37
8.1. Install SystemImager v3.9.4 or higher. ...37
8.2. Overview ...37
8.3. Define the cluster topology ...37
8.4. A simple example..38
8.5. See also ...39

9. FAQ (Frequently Asked Questions) ...40
9.1. See also ...49

10. Troubleshooting ...50
10.1. What is the "ETHER_SLEEP" variable, and when should I adjust it?...................................50
10.2. si_getimage fails with a "Failed to retrieve /etc/systemimager/mounted_filesystems

from <golden client>" message..50
10.3. My client autoinstallation/update hangs, crashes, or is ridiculously slow.50
10.4. My autoinstallcd doesn’t boot. ..52
10.5. My client failed to autoinstall, and when I run an rsync command on it manually, it takes

forever for the image server to respond. ...52
10.6. My client fails with the error: "chroot: cannot execute systemconfigurator:

No such file or directory" ..52
10.7. My client completes the autoinstall process successfully, but I get an "Invalid Partition Table"

error upon reboot, and Linux never boots. ...53
10.8. See also ...53

iv

List of Examples
2-1. Generating new autoinstallscripts...10
3-1. Running si_mkdhcpserver ..13
3-2. Running si_updateclient with the "-autoinstall" and "-config" options..13
3-3. Running si_getimage..14
3-4. Entries in /etc/hosts created by si_addclients ...19
3-5. Booting the autoinstall media from a running system’s hard drive..20
8-1. Example 1: distribute the passwd, shadow and group to all the nodes ..38
8-2. Example 2: distribute different access.conf to Login and Compute nodes ..38
8-3. Example 3: close the second login node (node002) to non-privileged users39
10-1. Installing SystemConfigurator into an Image on an Image Serer ..53

v

Chapter 1. Introduction to SystemImager®

1.1. SystemImager Overview
SystemImager, a component of the System Installation Suite is software that automates GNU/Linux
installs, software distribution, and production deployment.

One key feature of SystemImager is that it is distribution-agnostic and is able to support heterogeneous
hardware. This allows the deployment of any kind of GNU/Linux distribution (standard or even
customized) to any kind of target machine. The main goal of the project is to make deployment of large
numbers of computers easy. Typical environments include computer labs and render farms, but it has
proven particularly popular in clustered computing environments, such as grid and high performance
computing.

Another design feature that facilitates GNU/Linux distribution and hardware independence is that
SystemImager works with file based (rather than block based) system images. An image is stored as a
directory hierarchy of files representing a comprehensive snapshot of a machine, containing all the files
and directories from the root of that machine’s file system. Images can be acquired in multiple ways,
including retrieval from a sample system (golden client), or by direct generation on the SystemImager
server using third-party tools.

The standard method of image creation involves cloning of a pre-installed machine, the golden-client. In
this way, the user can customize and tweak the golden-client’s configuration according to his needs,
verify it’s proper operation, and be assured that the image, once deployed, will behave in the same way
as the golden-client. Incremental updates are possible by syncing an updated golden-client to the image,
then syncing that image to deployed machines using the si_updateclient command. Images are hosted in
a central repository on a server, called the image-server, and they can be distributed among the clients
using different transports: rsync (the default), multicast (via Flamethrower1), SSL encrypted rsync (using
a SSH tunnel), and via BitTorrent.

1.2. Who Should Use This Guide
This guide is for system administrators who install and configure systems in a network environment.
Those who would benefit from using SystemImager include:

• Organizations that have Internet server farms

• Organizations that manage many workstations or servers

• Organizations doing super-computing/clustering with Linux

• Organizations involved in complex Linux-based grid-computing environments

• Anyone who needs to maintain identical configurations on a large number of machines

• Manufacturing organizations that must automate the software preload process for Linux based
machines.

1

Chapter 1. Introduction to SystemImager®

1.3. How SystemImager Works
SystemImager allows you to retrieve an entire system image from a golden client, which is a manually
installed, customized machine, to an image server, which is the machine that will hold and distribute
system images. You can deploy the images to any number of client systems from the image server.

After initial image deployment, you can update the client systems by syncing them to an updated image
on the image server. Updates are fast and efficient because only the modified parts of files are pulled to
the client.

1.3.1. Supported Distributions
SystemImager uses SystemConfigurator (http://wiki.systemimager.org/index.php/System_Configurator)
to custom configure autoinstall clients for specific distributions. Through SystemConfigurator,
SystemImager supports all major GNU/Linux distributions and most others, including custom or
in-house distributions. Using "footprints", SystemConfigurator works with distributions based on their
system configuration style rather than needing to know the name of the distribution. To determine a
system’s footprint, SystemConfigurator identifies the configuration files in use and associates that
footprint with a configuration style. It then correctly makes settings, such as hostname or IP address,
without needing to know the name of the distribution.

Therefore, SystemImager is distribution agnostic in nearly all areas. With few exceptions, all distribution
specific knowledge exists within the SystemConfigurator tool, which supports a very large range of
distributions. If you find a distribution that does not work with SystemImager, please file a bug report.

1.3.2. System Requirements

• Your image server must have enough disk space to hold the images to be installed on your client
systems (the default directory used to store images is /var/lib/systemimager/images).

• All clients that will use the same image should have the same number of hard drive(s). The hard drives
may be of different capacities, and disks may be larger with no problem and smaller within reason.

Advanced users can modify the /etc/systemimager/autoinstallscript.conf file within an
image to make adjustments, then run the si_mkautoinstallscript(8) command to install the same
image on clients with varying disk and/or filesystem configurations.

• For PXE installations, you need a compatible TFTP server running on the boot server, which is usually
the same machine as the image/DHCP server. Debian provides such servers in the tftpd-hpa and atftpd
packages, while Red Hat 7.0 and later include such a server in the tftp-server package. H. Peter Anvin
maintains the tftp-hpa package that provides the required functionality.

• In addition to a compatible TFTP server, PXE network-based installations may also require a PXE
daemon to run on your image server. This requirement depends on the firmware used on the client side
and the capabilities of your DHCP server. Usually a running PXE daemon is not necessary if the
image server uses a quite recent distributions, since all the recent versions of the DHCP daemon
include the PXE functionalities.

2

Chapter 1. Introduction to SystemImager®

• To properly setup a boot server it is strongly suggested the usage of the si_mkbootserver(8) tool,
included in SystemImager.

1.4. Glossary of Terms

image

A live snaphot of a machine containing files and directories from the root of that machine’s
filesystem.

An image is a chroot-able filesystem, stored in /var/lib/systemimager/images/$NAME.

Examples:

• /var/lib/systemimager/images/RHEL4/

• /var/lib/systemimager/images/Ubuntu_7_04/

• /var/lib/systemimager/images/HPC_1.0/

• ...

override

Overrides can be used to manage differences from images. A typical use is to customize a "vanilla"
image adding some additional packages, but they are commonly used to store and distribute
configuration files by si_pushoverrides(8).

Overrides are stored by default in /var/lib/systemimager/overrides/ (this directory can be changed in
the configuration file /etc/systemimager.conf). All the files and directories defined inside an
override are distributed exactly as they are, that means preserving all the data and also metadata:
permissions, ownership, timestamps, etc.

Examples:

• /var/lib/systemimager/overrides/RHEL4/

• /var/lib/systemimager/overrides/Compute_config/

• /var/lib/systemimager/overrides/HPC_1.0_custom/

• ...

image server

A server that has all the images and overrides available for the installation.

3

Chapter 1. Introduction to SystemImager®

client

A machine to be auto-installed with a (single) selected image.

golden client

A manually-installed, customized machine from which an image is taken for deployment to client
systems.

transport

The protocol used to distribute images from the image server to the clients. Different approaches
can be used, depending on the particular transport used: push / pull / p2p / ...

Examples: rsync, multicast, rsync over SSH, BitTorrent

autoinstall media

Media that is used to boot an autoinstall client to begin the autoinstall process. Autoinstall media
can be a USB disk, a CDROM, the network (via PXE), or the local hard drive of the autoinstall
client.

autoinstall script

One or more scripts associated with an image, each unique to a specific
partitioning/filesystem/network configuration. The si_getimage(8) command creates an initial
autoinstallscript, which can be regenerated later, possibly with different options, using the
si_mkautoinstallscript(8) command. The autoinstall script (also called the ".master script") is
downloaded and executed by the autoinstall client, and performs most of the autoinstall process.
Names of autoinstall scripts begin with the image name and end in .master. For example:
my_webserver_image_v1.master

si_getimage(8)

A command run from the image server to pull a system image from a golden client.

si_prepareclient(8)

A command you must run on the golden client immediately prior to running si_getimage(8) on the
image server. si_prepareclient(8) prepares the golden client to have its image retrieved and creates
an etc/systemimager directory with information about the golden client, such as the disk
partitioning scheme(s).

4

Chapter 1. Introduction to SystemImager®

si_clusterconfig(8)

A tool to manage and show the SystemImager cluster topology. By this command is possible to tells
your image server which image and overrides to install on the auto-install clients.

si_mkdhcpserver(8)

A command that creates a SystemImager -appropriate /etc/dhcpd.conf file. DHCP can be used
to assign IP addresses to autoinstall clients.

si_mkdhcpstatic(8)

A command to modify the /etc/dhcpd.conf file, adding static entries for autoinstall clients
based on the IP addresses handed out to these clients by the DHCP server.

si_mkbootserver(8)

A utility that helps to setup and configure a network boot server for SystemImager.

si_updateclient(8)

A command that updates or synchronizes client systems to a new or updated image after the initial
autoinstall, enabling software and content distribution.

si_pushoverrides(8)

A command to update and/or keep synchronized clients files, pushing the overrides defined by
si_clusterconfig(8) from the image server.

5

Chapter 2. Installing SystemImager

2.1. How Does it Work?
SystemImager uses a centralized server, called image server that retrieves a golden client’s entire system
image and deploys it to any number of different client systems. A golden client is a system you have
customized to work exactly the way you want. You can re-compile the kernel, install custom software,
and do any configuration file tweaking you like. The si_getimage(8) command pulls the golden image to
the image server for deployment to other systems.

Once you have deployed the initial image to your client systems, you can update/upgrade the client
systems by syncing them to an updated image on the image server. Only the modified parts of files are
pulled to the client for a fast, efficient, and accurate mass update/upgrade.

Tools other than SystemImager are available for doing automatic installations, such as Red Hat’s
Kickstart, which installs systems based on a list of pre-defined packages or debootstrap, used to
create a Debian base system from scratch. However, such package-based installs can be very
limiting because they don’t have an automated way to deal with non-packaged files. If you
re-compile your kernel, add a piece of non-packaged software, or modify certain configuration files,
package-based installation methods usually require you to do some sort of scripting or programming
to deal with these "special cases."

2.2. Obtaining SystemImager
SystemImager is currently packaged in RPM and DEB format. Official packages can be downloaded
from http://www.systemimager.org/ (http://www.systemimager.org).

2.3. Selecting A Machine To Use As An Image Server
Because SystemImager uses other network services such as DHCP, an existing server that provides these
services often makes a good choice for an image server. In addition, the image server you choose needs
to have enough disk space to hold the images you want to deploy. SystemImager stores images as an
uncompressed directory structure, so a quick analysis of the disk usage on your golden client will give
you a good estimate of the space required on the image server. If you plan to do multiple simultaneous
image updates, poor processor performance on your image server can cause a bottleneck.

An alternative scalable and reliable method to break the bandwidth and performance limits of the image
server is the BitTorrent transport. With BitTorrent the upload bandwidth of the clients can be used to
distribute the images among the nodes exploiting the advantages of the peer-to-peer networks. For more
informations see http://wiki.systemimager.org/index.php/BitTorrent
(http://wiki.systemimager.org/index.php/BitTorrent).

6

Chapter 2. Installing SystemImager

2.4. Installing an Image Server
The official packages of SystemImager are distributed in the file release system on SourceForge.net at
this link: https://sourceforge.net/project/platformdownload.php?group_id=259
(https://sourceforge.net/project/platformdownload.php?group_id=259)).

SystemImager depends on the System Configurator package that is also available on SourceForge:
https://sourceforge.net/project/showfiles.php?group_id=24006
(https://sourceforge.net/project/showfiles.php?group_id=24006)).

A quick way to download all the required packages is to run the sis-install script (replacing i386 with the
architecture of your clients):

$ mkdir systemimager
$ cd systemimager
$ wget http://download.systemimager.org/pub/sis-install/install
$ chmod u+x install
$./install -v --download-only --tag stable --directory . \
> systemconfigurator \
> systemimager-client systemimager-common \
> systemimager-i386boot-standard systemimager-i386initrd_template \
> systemimager-server \
> systemimager-bittorrent systemimager-flamethrower

Use ./install --help for more informations.

Install all the base packages in the image server. In RPM-based distributions run:

rpm -ivh systemconfigurator-*.rpm \
> systemimager-common-*.rpm systemimager-server-*.rpm \
> systemimager-*initrd_template-*.rpm systemimager-*boot-standard-*.rpm

In Debian or Debian-like distributions run:

dpkg -i systemconfigurator-*.deb \
> systemimager-common-*.deb systemimager-server-*.deb \
> systemimager-initrd_template-*.deb systemimager-boot-*-standard-*.deb \

If you want to use the BitTorrent transport install also the systemimager-bittorrent package. RPM
package:

rpm -i systemimager-bittorrent-*.rpm

DEB package:

dpkg -i systemimager-bittorrent-*.deb

7

Chapter 2. Installing SystemImager

If you want to use the Multicast transport install also the systemimager-flamethrower package. RPM
package:

rpm -i systemimager-flamethrower-*.rpm

DEB package:

dpkg -i systemimager-flamethrower-*.deb

This package requires udpcast (http://udpcast.linux.lu/source.html) and Flamethrower
(http://freshmeat.net/projects/flamethrower), usually included in the common distributions.

If your clients have multiple architectures download also the appropriate
systemimager-ARCHboot-standard and systemimager-ARCHinitrd_template in your image server.

The boot packages support multiple configurations. Because different client configurations require
different drivers, kernel versions, etc., SystemImager allows you to install different boot packages, which
are known as "boot flavors."

Each SystemImager release provides the "standard" flavors for each supported architecture. For example,
the 3.9.6 release should have these packages:

• systemimager-boot-i386-standard_3.9.6-1_all.deb,

• systemimager-boot-x86_64-standard_3.9.6-1_all.deb,

• systemimager-boot-ppc64-ps3-standard_3.9.6-1_all.deb,

• ...

SystemImager and its standard boot flavors support most common hardware configurations. The
.config files list the options for this kernel.

You can use other flavors at any time to support alternate client configurations, and multiple boot flavors
can be installed simultaneously.

To create a custom flavor perfectly compatible with the distribution you can exploit the UYOK (Use
Your Own Kernel) feature. Standard flavors use a general purpose kernel that supports a lot of hardware
components, but obviously they can’t be able to support all the possible devices that could be present in a
totally generic client (see also hardware with proprietary drivers). For this reason starting from 3.6.x the
UYOK (UseYourOwnKernel) feature has been introduced. This feature allows you to use the same
kernel that runs in your golden client to perform the installation in other clients. In this way it’s possible
to theoretically support all the hardware/components you could have. Simply if the kernel of your
distribution is working well with your clients, it works well too to install them. For more informations
see http://wiki.systemimager.org/index.php/UYOK.

8

Chapter 2. Installing SystemImager

2.5. Selecting A Machine To Use As A Golden Client
A golden client is a system manually installed and customized of which you want to make an image
(clone).

2.6. Creating an Image on the Golden Client
To create an image for deployment with the SystemImager tool, install and configure a Linux distribution
and any additional software that you want the image to contain on a system you will use as your golden
client. You will deploy the image of that system (or golden client) onto other machines.

2.7. Installing SystemImager Client Software on a Golden
Client

To create a golden client, you must install the systemimager-client package on it.

1. Download and install the systemimager-client package.

$ mkdir systemimager
$ cd systemimager
$ wget http://download.systemimager.org/pub/sis-install/install
$ chmod u+x install
$./install -v --download-only --tag stable --directory . \
> systemconfigurator \
> systemimager-client systemimager-common \
> systemimager-i386initrd_template

Use ./install --help for more informations.

Install all the base packages in the image server. In RPM-based distributions run:

rpm -ivh systemconfigurator-*.rpm \
> systemimager-common-*.rpm systemimager-client-*.rpm \
> systemimager-*initrd_template-*.rpm

In Debian or Debian-like distributions run:

dpkg -i systemconfigurator-*.deb \
> systemimager-common-*.deb systemimager-client-*.deb \
> systemimager-initrd_template-*.deb

2.8. Creating an Image from scratch
An alternative approach to create images is to install all the needed packages into a directory.

9

Chapter 2. Installing SystemImager

System Installer, a component of the System Installation Suite to which SystemImager belongs, allows
you to install Linux directly to an image, bypassing the golden client step. System Installer packages and
documentation can be found at http://systeminstaller.sourceforge.net Images created with
SystemInstaller are interchangeable with those created using the SystemImager tools.

You can even create an image using one of the common tools shipped with your distribution, instead of
using SystemInstaller. The tool must be able to install a distribution into a directory (ex. Debootstrap for
Debian, kickstart or yum for Red Hat, YaST for SuSE, etc.)

2.9. Upgrading SystemImager
Although SystemImager upgrades are automated in most ways, you must perform some upgrade
processes manually to prevent losing user customizations.

2.9.1. Regenerating autoinstallscripts
With each release of SystemImager, use the si_mkautoinstallscript command to update the autoinstall
scripts stored in /var/lib/systemimager/scripts. Installations using older scripts may fail.

si_mkautoinstallscript overwrites the pre-existing script for an image. If you make any changes to
your autoinstall scripts (also known as .master scripts), backup those scripts to forward port your
changes to the new release.

Example 2-1. Generating new autoinstallscripts

si_mkautoinstallscript -image myimage -post-install reboot -ip-assignment dhcp

If you require customizations to your autoinstallscript, edit the appropriate .master file in
/var/lib/systemimager/scripts/.

2.9.2. Migrating Customizations of the
/etc/systemimager/rsyncd.conf file to SystemImager 3.0.0
Prior to the release of SystemImager 3.0.0, your changes to /etc/systemimager/rsyncd.conf could
be made within the file, but were susceptible to upgrade issues. With version 3.0.0, you can make these
changes in a separate file that is maintained across upgrades. See the si_mkrsyncd_conf(8) man page for
details.

10

Chapter 2. Installing SystemImager

2.9.3. Regenerating boot media
Each time you upgrade Systemimager, you must also upgrade the boot media you use to boot the
autoinstall system. Use si_mkautoinstallcd or si_mkautoinstalldisk to regenerate removable media.

2.9.4. What happened to the binary tarballs?
The SystemImager 3.0.0 release deprecates the binary tarball releases and introduces the boot packages
feature, which requires that various components of the SystemImager system have some sort of version
control. Without relying on a package management system, version control requires significant effort, so
SystemImager 3.0.0 does not support unpackaged bits.

However, with the build system based on make, you can run commands like make install_server_all,
etc., which is now the preferred method for installing without using a package manager, although you
need to track down all build dependencies and runtime dependencies by hand.

11

Chapter 3. Using SystemImager

3.1. Installation Procedures Overview

1. Using the instructions in Chapter 2, install the SystemImager server package on the machine you
have chosen as your image server.

2. Install GNU/Linux on your golden client and customize as desired.

3. Using the instructions in Chapter 2, install the SystemImager client software on the golden client.

4. Run the si_prepareclient command on your golden client.

5. Choose and configure the method for assigning IP addresses to your autoinstall clients. This
information is required for the si_getimage command in the next step; however, you can change
these settings later by running the si_mkautoinstallscript command.

6. Run si_getimage on the image server to pull the golden client to the image server.

7. Run si_clusterconfig -e to define the groups of clients and to associate images and overrides to
groups. The command si_clusterconfig is available only in SystemImager 3.9.4 or later. Otherwise
you can always use the command si_addclients (see the next point) to associate the images to your
clients.

8. This point can be skipped if si_clusterconfig has been used. Otherwise run si_addclients on the
image server to tell it which clients will receive what image and to populate the image server’s
/etc/hosts and /var/lib/systemimager/scripts/hosts file.

9. Generate a boot media for your clients. There are four ways to boot the clients for auto-installation:

• boot from network (PXE) - see si_mkclientnetboot(8)

• boot from an auto-install CD - see si_mkautoinstallcd(8)

• boot from an auto-install disk (USB drive or internal disk) - see si_mkautoinstalldisk(8)

• boot from a running system - see si_updateclient(8)

10. Autoinstall the golden image on other machines using one (or more) generated boot media.

See the SystemImager Tools section in this chapter for detailed tool descriptions and functions.

3.1.1. Detailed Installation Instructions

1. Install the SystemImager server package on the machine you have chosen as your image server,
using the instructions in Chapter 2.

2. Install Linux on your "golden client" and customize as desired. Remember that the software
installed will eventually constitute the golden image for all other nodes installed with

12

Chapter 3. Using SystemImager

SystemImager. Don’t worry too much about getting it exactly right the first time, as you can easily
use SystemImager to make incremental changes to your image and deploy those changes without
doing a complete re-install.

3. Install the SystemImager client software on the golden client using the instructions in Chapter 2.

4. On the golden client, run the command si_prepareclient as root. This will create various files in
your /etc/systemimager directory that contain information on your disk partition scheme, filesystem
types, etc. si_prepareclient will also start an rsync daemon to allow its files to be transferred to a
server. Your golden client is now ready to have its image pulled by an image server.

If you are not in ssh mode, all files on your golden client are openly accessible to anyone on
your network. Once you have pulled the image from your golden client, the rsync daemon will
be automatically stopped. In case of errors during the image retrieval be sure to manually
deactivate the rsync daemon by killing the process or by simply rebooting the golden client. This
rsync server will not start automatically on future reboots. In rsync over SSH mode the rsync
communication is performed opening a SSH tunnel from the image server to the golden client.

5. Choose and configure the method for assigning IP addresses to your autoinstall clients.

The most common way to assign IP addresses to autoinstall clients is DHCP. To simplify the
configuration of the DHCP configuration file (/etc/dhcpd.conf), SystemImager includes a utility
called si_mkdhcpserver. This utility asks you for all the information it needs to create a DHCP
configuration file that is appropriate for your installation of SystemImager. After installation, you
can use DHCP to assign static IP addresses to your clients on an ongoing basis by running the
si_mkdhcpstatic command after your clients have booted and received an IP address.
si_mkdhcpstatic will modify your /etc/dhcpd.conf file on the imageserver to include static
entries for each of your hosts.

Alternately, you can pass hostname, imageserver, and networking information via installation
parameters, in the form of VARIABLE=value. Installation parameters can be defined in
/etc/systemimager/pxelinux.cfg/syslinux.cfg or can be passed as argument of
si_mkautoinstalldisk, si_mkautoinstallcd, or si_mkclientnetboot using the --append "STRING"
option. For a complete list of the available installation parameters see
http://wiki.systemimager.org/index.php/Installation_Parameters
(http://wiki.systemimager.org/index.php/Installation_Parameters).

Alternatively, if you are using a running system’s hard drive as the boot media, you can run
si_updateclient -autoinstall -server <imageserver> -configure-from eth0, which will create a
local.cfg file at the root of the client’s hard drive containing the existing live network settings.
When the autoinstall client boots, it will look for this file and use the provided values instead of
getting them from DHCP and the /var/lib/systemimager/scripts/hosts file on the image
server.

Example 3-1. Running si_mkdhcpserver

[root@imageserver]# si_mkdhcpserver

13

Chapter 3. Using SystemImager

Example 3-2. Running si_updateclient with the "-autoinstall" and "-config" options

Note that the options -autoinstall, -server, and -configure-from are abbreviated below as
-a, -s, and -c. You can abbreviate options to minimum uniqueness with most SystemImager
commands.

Minimum uniqueness means that if two options for a single command are similar, such as the
-image and -ip-assignment options to si_getimage, you can abbreviate them to -im and -ip.
[root@server7]# si_updateclient -a -s imageserver -c eth0
Retrieving SystemImager kernel...
Retrieving SystemImager initial ramdisk...
Adding SystemImager entry in /etc/lilo.conf...
running /sbin/lilo -d 50 -D systemimager ...
Ignoring entry ’delay’
Ignoring entry ’default’
Added linux
Added systemimager *

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Below are the contents of your /local.cfg file. Make sure that all
the variables are filled in and that they contain the proper values.
You may edit the file directly if you need to change any of the values.
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#
"SystemImager"
#
Copyright (C) 1999-2002 Bald Guy Software <brian.finley@baldguysoftware.com>
#
This file is: /local.cfg
#
HOSTNAME=server7
DOMAINNAME=mydomain.com
DEVICE=eth0
IPADDR=192.168.1.7
NETMASK=255.255.255.0
NETWORK=192.168.1.0
BROADCAST=192.168.1.255
GATEWAY=192.168.1.254
GATEWAYDEV=eth0
IMAGESERVER=192.168.1.203

6. Run si_getimage on the image server to pull the image from the golden client to the image server.

With si_getimage the image server pulls all the files and directories from the root of the client’s
filesystem back to the image repository in /var/lib/systemimager/images.

The basic syntax is: "si_getimage -golden-client [client_hostname] -image [image_name]"

Where [client_hostname] is the hostname or IP address of the "golden client" and [image_name] is
the name you want to give to this image. You can see many other options with "man si_getimage."

14

Chapter 3. Using SystemImager

Example 3-3. Running si_getimage

[root@imageserver]# si_getimage -golden-client my-golden-client \
> -image web_server_image_v1

si_getimage contacts the golden client and requests its
/etc/systemimager/mounted_filesystems file, which contains the list of mounted
filesystems and their mount points. si_getimage pulls out the mount points for the filesystems that
are unsupported and creates an exclusion list. The filesystems SystemImager currently supports
ext2, ext3, reiserfs, xfs, jfs and vfat. All other filesytems will be ignored, including proc, nfs, devpts,
iso9660, etc.

7. Run si_clusterconfig to manage the groups of your clients in the SystemImager database.

si_clusterconfig can be used also to show the defined groups with the list of clients that belong to
each group and/or the image associated to each client or group of clients. In show-mode the
command accepts as argument a list of hostnames, host-ranges and/or host-group, it resolves them in
the equivalent list of hostnames and prints them to stdout. The edit-mode can be interactive (option
-e) or batch (option -u). In interactive edit-mode si_clusterconfig opens an editor in your terminal
that allows to modify the client group definitions and their properties using a XML syntax. In batch
edit-mode it only parses the pre-defined XML configuration
(/etc/systemimager/cluster.xml) and refresh the opportune SystemImager internal
configuration files.

Do not edit /etc/systemimager/cluster.xml directly. Always use si_clusterconfig -e to be
sure that all the files needed by the installations process will be properly synchronized.

Here is a well-commented example of a simple cluster configuration:

<?xml version=’1.0’ standalone=’yes’?>
<!--

********************************* WARNING **************************************

This file has been generated by si_clusterconfig(8), do not edit manually!

********************************* WARNING **************************************

This is the main configuration file to describe the topology of
your clients and your image server informations.

This file will be used by all the SystemImager commands to identify the
logical groups of your clients and their specific configurations.

See comments below for more details.
-->
<xml>

<!-- The image server hostname. -->
<master>master1</master>

<!--

15

Chapter 3. Using SystemImager

This is the global name: this name will be used to identify
all the hosts defined in this file (the global supergroup).

IMPORTANT: this is a mandatory entry!!!
-->
<name>all</name>

<!--
This is the global override: all the files stored in this
overrides will be pushed to all the clients.

IMPORTANT: this is a mandatory entry!!! If you don’t want to use
it do not create the global override in
/var/lib/systemimager/overrides/

Multiple overrides can be specified as a list of multiple XML tags:

<override>OVERRIDE_NAME_1</override>
<override>OVERRIDE_NAME_2</override>
...
<override>OVERRIDE_NAME_N</override>

The OVERRIDE_NAME_1 ... OVERRIDE_NAME_N will be distributed
preserving the same order as they appear in the XML file. This
means that in case of file overlaps (more files in multiple
overrides that should be distributed to the same target
filename) the first hit wins. In this case OVERRIDE_NAME_1 is
the most important and OVERRIDE_NAME_N is the least important.

-->
<override>all</override>

<!--
Following there is an example of a "fake" group. The group
name is "Local", it uses the image "Local", the override in
/var/lib/systemimager/overrides/Local and it contains only
the localhost server. Totally useless, but it’s there to
explain how it works... ;-)

-->
<group>

<name>Local</name>

<override>Local</override>
<node>localhost</node>

</group>

<!--
This is a group that contains two nodes: node001 and
node002. The group is called "Login" and it uses the
override:

The clients node001 and node002 will be auto-installed using the
image:

16

Chapter 3. Using SystemImager

/var/lib/systemimager/images/SuSE10

And the override:

/var/lib/systemimager/overrides/SuSE10_frontend

After the initial installation it will be possible to keep in
sync the common files for the Login group creating them into the
"SuSE10_frontend" override and using the command
si_pushoverride(8).

It will be even possible to define host-only files creating an
override using the hostname of the target client. For example
all the files in /var/lib/systemimager/overrides/node001 will be
distributed only to node001 (and in case of overlaps these files
will replace the files that come from the group override and
from the global override).

-->
<group>

<name>Login</name>
<!--

If a client belongs to multiple groups, the group with
the higher priority will be used to choose the image
for that client; for the overrides the groups will be
sorted by group priority: in case of file overlaps
first hit wins.

In this example node001, that belongs to the group
Login and Storage, will be auto-installed with the
image SuSE10 and it’ll receive the overrides in the
following order (remember that in case of file overlaps
first hit wins):

SuSE10_frontend, SuSE10, Storage

-->
<priority>10</priority>

<!--

Also a group can have multiple overrides. The same
rules for multiple values of the global overrides are
valid also here.

-->
<override>SuSE10_frontend</override>
<override>SuSE10</override>
<node>node001,node002</node>

</group>

<!--
Another example. The group Storage contains 16 nodes (from
node1293 up to node1308). They will be auto-installed using the
image:

17

Chapter 3. Using SystemImager

/var/lib/systemimager/images/RHEL4

And the override:

/var/lib/systemimager/overrides/Storage

In general the best practice is to use the same name for the
override and the group name (like this group).

-->
<group>

<name>Storage</name>
<priority>20</priority>

<override>Storage</override>
<node>node001,node1293-node1308</node>

</group>

<!--
Define your custom groups below (and remember to remove
or comment the previous entries if you don’t want to use
them).

...
-->

</xml>

8. si_addclients creates a symbolic link to the master script for the image to which each specified
autoinstall client is assigned. si_addclients also populates the image server’s /etc/hosts and
/var/lib/systemimager/scripts/hosts files. The hosts file provides the default mechanism
used by autoinstall clients to look up their hostnames.

You can skip the si_addclients step if you’ve used si_clusterconfig as specified at the
previous point.

When si_addclients is run without arguments, it takes you through three configuration screens
interactively.

a. In the first configuration screen si_addclients, asks you to specify the hostname pattern of your
autoinstall clients. Autoinstall client hostnames are defined by a host-range string and a domain
name string. For example, if you choose "systemimager.org" as your domain name, and
"www07-www11,www20" as your range, you will define the following autoinstall clients:
www07.systemimager.org
www08.systemimager.org
www09.systemimager.org
www10.systemimager.org
www11.systemimager.org
www20.systemimager.org

b. In the second screen, you map the clients defined in Section 1 to an image.

18

Chapter 3. Using SystemImager

Each invocation of si_addclients allows you to map a single range of clients to an image.
If you want to map different client ranges to different images, you must execute the
si_addclients command multiple times.

c. In the third configuration screen, the si_addclients command asks you for a range of IP
addresses from which it populates your /etc/hosts and
/var/lib/systemimager/scripts/hosts files. When an autoinstall clients boots, it will
attempt to retrieve the latter file from the image server and use it to look up its hostname. If this
step fails, the client will attempt to do a reverse DNS lookup. If you have PTR records
configured for each of your autoinstall clients, you can skip the third configuration step;
however, it is recommended to complete it because it is more robust.

Example 3-4. Entries in /etc/hosts created by si_addclients

If you give si_addclients a range of IPs from "192.168.1.1-192.168.1.99", a hostname range of
"server1-server99" and "mydomain.com" as domain name, then it would generate the following
/etc/hosts file:

192.168.1.1 server1.mydomain.com server1
192.168.1.2 server2.mydomain.com server2
192.168.1.3 server3.mydomain.com server3
192.168.1.4 server4.mydomain.com server4
192.168.1.5 server5.mydomain.com server5
192.168.1.6 server6.mydomain.com server6
192.168.1.7 server7.mydomain.com server7
192.168.1.8 server8.mydomain.com server8
192.168.1.9 server9.mydomain.com server9
192.168.1.10 server10.mydomain.com server10
192.168.1.11 server11.mydomain.com server11

[... etc, etc, etc ...]

192.168.1.97 server97.mydomain.com server97
192.168.1.98 server98.mydomain.com server98
192.168.1.99 server99.mydomain.com server99

9. Create a boot media to auto-install your clients.

You can use one of four methods to autoinstall the clients:

• Boot the system from a USB disk or an internal disk.

Run si_mkautoinstalldisk to create an autoinstall USB disk (or a generic disk) that you can use
with any machine.

• Boot the system from a CDROM.

19

Chapter 3. Using SystemImager

Run si_mkautoinstallcd to create an ISO image that can be burned to CDROM. You can use the
CDROM to boot your autoinstall clients and use it with any machine.

• Auto-install the images from a running system.

If your client is already running GNU/Linux you can simply execute the si_updateclient
command and run it with the -autoinstall option.

Example 3-5. Booting the autoinstall media from a running system’s hard drive

[root@server7]# si_updateclient -a -s imageserver -c eth0

• Boot the system from the network. If your systems are network-boot capable, using PXE for
example, you can start an autoinstall without using local media.

PXE is usually enabled through a BIOS setting. Booting can be unstable and client side firmware
is not consistent.

SystemImager comes with the si_mkbootserver utility to help configure a PXE server. Running
si_mkbootserver is an iterative process. It will attempt to generate an appropriate tftproot
directory, configure your tftp server, and run various tests to see if things are functioning properly.
Once si_mkbootserver detects an error, it will fail out and generate an error message. When you
have corrected the error, you can re-execute si_mkbootserver, and repeat until it exits
successfully. si_mkbootserver will probably not work with all PXE clients. If it fails to work
with your configuration, please send a mail to sisuite-users@lists.sourceforge.net
(mailto:sisuite-users@lists.sourceforge.net).

• Now it’s time to install the images on your clients simply booting them with the generated boot
media and waiting for the full auto-installation.

3.1.2. SystemImager Tools

3.1.2.1. the si_prepareclient command

• After configuring the golden client, run the si_prepareclient command to create a file with the
partition informations from your disks that will be put it in
/etc/systemimager/autoinstallscript.conf.

• si_prepareclient will also create a temporary rsync(1) configuration file (in /tmp and start rsync in
server mode (rsync --daemon). This step allows the image server to pull the image from the client but
will not cause the rsync daemon to be restarted after the golden client is rebooted, helping avoid
security concerns from sharing a golden client’s root filesystem via rsync. Once the image is
successfully pulled from the golden client, this rsync daemon will be automatically stopped.

20

Chapter 3. Using SystemImager

3.1.2.2. The si_getimage command

• After running si_prepareclient, run the the si_getimage command on the image server. For example :
si_getimage -golden-client 192.168.1.1 -image my_webserver_image_v1

• si_getimage contacts the golden client and requests its
/etc/systemimager/mounted_filesystems file, which contains the list of mounted filesystems
and the devices on which they are mounted. It pulls out the mount points for the filesystems that are
unsupported and creates an exclusion list. Currently supported filesystems are ext2, ext3, and reiserfs.
All other filesystems are unsupported, including proc, devpts, iso9660, etc.

• si_getimage then pulls the golden client’s entire system image, excluding the filesystems in the
exclusion list, by connecting to the rsync daemon running on the golden client. All the files from the
client will be copied over, recreating the file and directory hierarchy in the image directory.

• You can also use si_getimage to update an existing image by simply specifying an existing image
name, for example, si_getimage -golden-client 192.168.1.1. -image <imagename>. si_getimage
then updates the image to match the files on your golden client. When you do this, only the parts of
files that are different will be copied over. Files that exist in the old image but not on the golden client
will be deleted, and files that exist in both places but have changed will be updated. si_getimage is
one way to update an image when new security patches or other system updates come out. However,
this method is revision control on an image-by-image basis, and not true revision control where
individual file revisions are tracked on a line-by-line basis. The recommended method is never to
overwrite a known working image. Revision control on an image-by-image basis also ties in to the
si_updateclient command. By default, all images are stored in the parent directory of
/var/lib/systemimager/images/ in a directory that bears the image name. For example:

• /var/lib/systemimager/images/my_webserver_image_v1/

• /var/lib/systemimager/images/my_webserver_image_v2/

• /var/lib/systemimager/images/my_webserver_image_HEAD/

• ...

3.1.2.3. Autoinstall scripts

• After si_getimage has pulled the files to the image directory on the imageserver, it creates an
auto-install script customized for the image. The auto-install script in this example is named
"my_webserver_image_v1.master". All auto-install scripts are placed in the
/var/lib/systemimager/scripts directory.

• The disk partitioning information left behind by the si_prepareclient command adds the necessary
commands to re-partition the disk(s) on the autoinstall clients.

• Filesystem informations are taken from the /etc/systemimager/autoinstallscript.conf file
in the image (i.e.
/var/lib/systemimager/images/my_webserver_image_v1/etc/systemimager/autoinstallscript.conf)
and used to determine the appropriate filesystem creation commands and to determine mount points
for the autoinstall process. Networking informations are added to the autoinstall script based on
command line options passed to si_getimage or information it prompts you for. This information is

21

Chapter 3. Using SystemImager

added in variable form as the autoinstall client will determine the values for things such as its
hostname and IP address during the autoinstall process.

3.1.2.4. The si_addclients and si_clusterconfig commands

• After running si_getimage, run the si_clusterconfig command, which opens an interactive editor
where you can define the bindings of your images with your groups of clients.

The same operation can be done by si_addclients, which asks you for the hostname range you will be
installing, but it doesn’t have the concept of host groups, so you can specify only host ranges or single
hostnames (the same can be done by si_clusterconfig). si_addclients prompts you to choose the
image that will be installed to these hosts and creates symbolic links for each hostname that point to
the master autoinstall script for that image. For example: "www3.sh -> web_server_image_v1.master".

If the image is updated and you allow si_getimage to update the master autoinstall script also, then
each of the associated soft links will point to the updated autoinstall script. If individual host
configuration is necessary, the soft link for that host can be removed and replaced with a copy of the
master autoinstall script that can then be customized for that host. This customization is a manual
process and is up to the system administrator, but it is stronly suggested to limit these manual
customizations and to always double check them before opening a new bug.

The configurations made by si_addclients can ovverride the configurations made by
si_clusterconfig. In order to exclude unexpected problems it is strongly suggested to always use
only the si_clusterconfig command, obviously when it is available (that means you’re using
SystemImager 3.9.4 or greater).

3.1.2.5. Additional Installation Information

• The unattended install procedure is flexible and works with almost any available hardware. You can
also easily modify it to work with new or special hardware.

A miniature Linux distribution called Brian’s Own Embedded Linux (BOEL) is used for autoinstalls.
It consists of a customized kernel and an initial ram disk that contains only the specific commands and
utilities necessary to perform autoinstalls. The same kernel and initial ram disk (initrd.img) can be
used to boot from USB disks, CDROMs, the network, or any running Linux system’s local hard drive.

The si_mkautoinstalldisk and si_mkautoinstallcd commands use the syslinux(2) utility to create
disks and CDROMs that will boot the SystemImager kernel and initial ram disk. pxelinux(2), which is
a sister tool to syslinux, allows the same kernel and initial ram disk to boot PXE capable machines
from the network. Both syslinux and pxelinux need a configuraton file, but the two tools can use the
same one and SystemImager handles this for you.

• The standard autoinstall kernel contains all the necessary drivers for the majority of systems. Custom
kernels can be generated using UYOK feature to meet special disk and network driver requirements.

22

Chapter 3. Using SystemImager

To use UYOK and generate kernel+initrd.img goes to your golden client and run the following
command:

si_prepareclient --server servername --no-rsyncd --my-modules

The initrd.img will be generated on the fly from the initrd_template package (eg.
systemimager-i386initrd_template). If you specify --no-rsyncd argument, rsyncd will be not restarted.
With --my-modules you can save a lot of space in the UYOK initrd, because only the the modules that
are currently loaded in your golden client will be included. Without --my-modules all the available
modules will be added into the initrd allowing your UYOK kernel+initrd.img to be used also with
heterogeneous clients. If all goes well you’ll find the UYOK kernel+initrd.img in
/etc/systemimager/boot/ in your golden client. When you run si_getimage from your image server (in
this case do not specify --no-rsyncd) the UYOK kernel and initrd.img will be transferred to
/usr/share/systemimager/boot/<arch>/<name_of_your_image> in your image server. In general, if you
have an heterogeneous environment (clients with different hardware and components) it’s better to use
the standard BOEL kernel+initrd, because the standard kernel is strongly optimized to obtain better
performances. In the other cases, in particular if you have 3rd-party or custom kernel modules it’s
strongly recommended to use UYOK.

• Once the kernel has booted, it mounts the initial ram disk as its root filesystem. The kernel then
executes an initialization script on the ram disk that has been written to do SystemImager-specific
tasks. This script will use either a configuration file (/local.cfg), installation parameters (passed by
the kernel boot options, see http://wiki.systemimager.org/index.php/Installation_Parameters for a
complete and up to date list of installation parameters), or a combination of DHCP and the
/var/lib/systemimager/scripts file pulled from the image server to determine the autoinstall
client’s IP address and hostname information.

If DHCP is used, the client parses the hosts file which was retrieved from the image server to find its
IP address and determine its hostname. Finally, the client retrieves an autoinstall script from the image
server based on its hostname and executes it. The autoinstall script is image specific, determining
which image a client will receive. Following is a summary: IP address -> hostname -> image specific
autoinstall script named with hostname.

3.1.2.6. How to Update an Image

• If you want to update an image on your image server, you can use one of the two following methods:

1. Directly edit the files in the image directory. The best way to do this is to chroot into the image
directory. You can then work with the image as if it were a running machine. You can even install
packages with apt-get, aptitude or RPM and yum for example.

2. Run the si_getimage command again, specifying a golden client that has been modified in the
desired way. Again, only the parts of the files that have changed will be pulled across. Files that
have been deleted on the golden client will also be deleted in the image. You have the option to
update the master autoinstall script for the image (suggested) or leave it alone. The advantages of
running the si_getimage command are that you can verify that your new configuration works on
the golden client and that the master autoinstall script is updated.

23

Chapter 3. Using SystemImager

• Once a system has been autoinstalled, you can use the si_updateclient command to update a client
system to match a new or updated image on the image server. So, for example, if you’ve installed your
company’s 300 web servers and a security patch comes out the next day, you can simply update the
image on the image server and run si_updateclient on each of your web servers. Only the modified
files are pulled over, so your site is patched very quickly. You should create an entirely new image
with a new version number so that you have some form of revision control. This way, if you find out
that the patch you applied corrupted your entire web farm, you can simply do a si_updateclient back
to the last known working image.

In any case it is always suggested to stop the production in the machines before running the
update via si_updateclient, since some files used by the running applications could be potentially
updated or removed while the applications are using them.

• You can also use the si_updateclient command with the -autoinstall option to copy the autoinstall
kernel and initial ram disk to the local hard drive of an autoinstall client that is currently running, but
in this way the image needs to be re-deployed. si_updateclient then modifies the boot-loader
configuration to include an appropriate entry for the new kernel and initial ram disk and makes this
new kernel the default. The next time the client system boots, it loads the SystemImager kernel and
initial ram disk, which begins the autoinstall process. You can therefore remotely re-deploy any
running Linux machine without feeding the machine any external CD or USB disk and without having
to reconfigure the BIOS to boot off the network, which can be quite problematic with some BIOSes.

24

Chapter 4. HOWTO Use BitTorrent for
peer-to-peer Installs

4.1. Install SystemImager v3.7.4 or higher.
Follow the steps described in the installing section for details.

4.2. Configure the BitTorrent transport on the image
server.

Open the file /etc/systemimager/bittorrent.conf to validate the configuration; in particular
check the following parameters:

• BT_INTERFACE=eth
i

must be the correct interface to reach the client nodes,

• BT_IMAGES=image1,image2,...,imageN must contain a comma separated list of the images to be
distributed via BitTorrent,

• BT_OVERRIDES=override1,override2,...,overrideM must contain a comma separated list of
the overrides to be distributed via BitTorrent (you can always decide to distribute an image by
BitTorrent and an override by rsync or vice-versa),

• BT_UPDATE=y|n set to y to force the synchronization of the BitTorrent data with the images and
overrides content every time the daemon on the image server is restart,

• BT_COMPRESS=y|n set to y to compress the images and overrides (with gzip) before the deployment
(use this option only if your image server is a powerful machine, in particular with a quite recent
CPU).

Following there is a typical configuration to deploy 2 images (suse10 and suse10_frontend) with their
overrides:

#
"SystemImager"
#
Copyright (C) 2006 Andrea Righi <a.righi@cineca.it>
#
$Id: bittorrent.conf 3533 2006-04-24 20:25:59Z bli $
#

The bittorrent tracker port.
BT_TRACKER_PORT=6969

Tracker state file.

25

Chapter 4. HOWTO Use BitTorrent for peer-to-peer Installs

BT_TRACKER_STATE=/tmp/dstate

Tracker log file.
BT_TRACKER_LOG=/var/log/systemimager/bittorrent-tracker.log

Interface used to seed files with bittorrent.
BT_INTERFACE=eth0

Set to yes if you want to compress the images before distributing
them via BitTorrent. Set to ’n’ if the image server has an old CPU or
is not powerful in computations.
#
Allowed values: y|n
BT_COMPRESS=y

Set to yes if you want to always synchronize the BitTorrent images
with the chrootable images on /var/lib/systemimager/images when the
SystemImager BitTorrent daemon starts.
#
Allowed values: y|n
BT_UPDATE=n

Comma separated list of images to distribute with BitTorrent
(ex. BT_IMAGES=RHEL4_base,suse10,frontend,backend...)
IMPORTANT: no spaces between images!!!
BT_IMAGES=suse10,suse10_frontend

Comma separated list of overrides to distribute with BitTorrent
(ex. BT_OVERRIDES=RHEL4_base,suse10,frontend,backend...)
IMPORTANT: no spaces between overrides!!!
BT_OVERRIDES=suse10,suse10_frontend

4.3. Configure the clients to use the BitTorrent transport.
To enable the clients to use the BitTorrent transport you need to specify the boot parameter
BITTORRENT=y. Typically this can be done appending this option at the end of the kernel boot string in
/etc/systemimager/pxelinux.cfg/syslinux.cfg or passing it via the --append option in the
commands that allow it (si_mkclientnetboot, si_mkautoinstallcd, si_mkautoinstalldisk).

Here is a typical syslinux.cfg configured to enable all your clients to use auto-installation with the
BitTorrent transport:

DEFAULT systemimager

#
Uncomment next line to send pxelinux boot prompt over serial port 0.
NOTE: Be sure your serial port speed is appropriate (57600, 9600, etc.)
#

26

Chapter 4. HOWTO Use BitTorrent for peer-to-peer Installs

#SERIAL 0 57600
DISPLAY message.txt
PROMPT 1
TIMEOUT 50

Add the following to the append line above to use your first serial port
(ttyS0) as a console in addition to your monitor (tty0). NOTE: Be sure
your serial port speed is appropriate (57600, 9600, etc.)
#
#console=ttyS0,57600

Add the following to the append line above to increase the size of your tmpfs
filesystem. About 100MB larger than your image size should suffice.
#
Other tmpfs mount options are also supported. See the FAQ for details.
#tmpfs_size=800M

LABEL systemimager
KERNEL kernel
APPEND vga=extended initrd=initrd.img root=/dev/ram BITTORRENT=y MONITOR_SERVER=172.16.36.1 MONITOR_CONSOLE=yes

Last step consists to boot your clients with the proper auto-install boot media and enjoy the
auto-installation with BitTorrent.

4.4. Important notes

When you perform any change into an image or override that is deployed via BitTorrent remember
to force a synchronization of the BitTorrent repository.

To do so, simply change the value BT_UPDATE=y in /etc/systemimager/bittorrent.conf and
restart the BitTorrent deamon:

/etc/init.d/systemimager-server-bittorrent restart

Then if you don’t want to re-create the repository at each restart of the daemon change it to
BT_UPDATE=n.

You can also explicitly remove the tarball and the torrent of the image that you have modified to speed-up
the server-side process, instead of setting BT_UPDATE=y in the configuration file. In this case a restart of
the BitTorrent daemon will re-create only the tarball and the torrent of the single image that you touched.

27

Chapter 4. HOWTO Use BitTorrent for peer-to-peer Installs

4.5. A Detailed Walk Through the Process

1. The BitTorrent tracker is started on the image server by the command
/etc/init.d/systemimager-server-bittorrent start. The tracker allows the distribution
of all the torrents that are in the directory /var/lib/systemimager/torrents. Torrents needed
for the imaging will be generated in the next step.

2. The BitTorrent protocol has been designed to transfer only regular files and directories, but it’s not
natively able to transfer all the UNIX metadata and special files (like your /dev/ for example). For
this reason is necessary to "map" all the files in a image to a single regular file. During the
systemimager-server-bittorrent startup, SystemImager provides to generate a tarball and a
".torrent" file for each image and override to be distributed by this transport. Tarballs are stored in
/var/lib/systemimager/tarballs and ".torrent"s in /var/lib/systemimager/torrents.

3. After the tarballs and torrents generation, the first seeder is started on the image server (after the
tracker) by the script /etc/init.d/systemimager-server-bittorrent. The first seeder is the
only peer that owns all the chunks of the files to be distributed to the other peers from the beginning.
During the first phase of the imaging process it constitutes the only bottleneck (like in the
client-server approach), but when the first chunks of data are distributed to some peers (peer set)
they begin to talk together, exploiting the advantages of the peer-to-peer network and freeing the
image server from the load. In this way, after this transition phase, the image server becomes like
another peer in the swarm and it does not constitute a bottleneck anymore.

4. Clients start with a boot package (kernel + initrd.img) that includes the BitTorrent client. The
first step for a client is to download the needed torrents. This is done using the rsync protocol
(torrents are really small compared to the whole image and this doesn’t represent a problem in terms
of scalability, also with a huge number of clients downloading them at the same time).

5. When the clients have the needed torrents they can start to use the BitTorrent protocol to download
anything they need. The first files downloaded via BitTorrent are the BOEL binaries (distributed in a
tarball and extracted in the client after the download). The clients continue to seed (upload) the
BOEL binaries tarball during the whole auto-installation process, also when they have extracted it,
giving their upload band availability to the newer approaching clients.

6. After the download of the BOEL binaries tarball and a first system initialization (module
autodetection, disk partitioning, filesystem creation, etc.) it’s time to download the image tarball via
BitTorrent. This operation works in the same way as the BOEL binaries distribution.

7. The image tarball is extracted in the client’s filesystem. During the extraction the client continues to
act as a seeder (uploader) for the image tarball. After the extraction the image tarball is removed
from the client host and the BitTorrent client is stopped.

8. The overrides are downloaded in the same way.

9. The client is rebooted/kexec-ed/powered-off or starts to beep, according to the post-install action.

4.6. See also
See http://wiki.systemimager.org/index.php/BitTorrent
(http://wiki.systemimager.org/index.php/BitTorrent) for details.

28

Chapter 5. HOWTO Use Flamethrower for
Multicast Installs

5.1. Install SystemImager v3.2.x or higher
Follow the steps described in the installing section for details.

5.2. Install the Flamethrower Package and its
Dependencies

Debian users can do an "apt-get update" and "apt-get install flamethrower".

For RPM based distributions, you can download the Flamethrower RPMs from here
(http://sourceforge.net/project/showfiles.php?group_id=259).

5.3. Run si_getimage, si_mvimage, or si_cpimage
Flamethrower is a stand-alone utility, but SystemImager maintains a SystemImager seperate copy
(/etc/systemimager/flamethrower.conf) of the Flamethrower configuration file
(/etc/flamethrower/flamethrower.conf). Each of these three commands (si_getimage,
si_mvimage, si_cpimage) will create an appropriate entry in
/etc/systemimager/flamethrower.conf for the image you specify.

It is also possible to manually add an entry, if you feel compelled to to so. Take a look at the
flamethrower.conf man page, or the comments inside the configuration file (image entries go at the very
bottom of the file). However, it’s much easier to just do a:

si_mvimage my_image-v1 tmp_name && si_mvimage tmp_name my_image-v1

5.4. Start up your Flamethrower daemon
Edit /etc/systemimager/flamethrower.conf, and set the following:

START_FLAMETHROWER_DAEMON = yes

Then crank it up with:

29

Chapter 5. HOWTO Use Flamethrower for Multicast Installs

/etc/init.d/systemimager-server-flamethrowerd restart

5.5. Tell your autoinstall clients to use Flamethrower
If you use DHCP, you can add the following to your dhcpd.conf file:

option option-143 code 143 = string; # (only for ISC’s dhcpd v3)
option option-143 "9000";

Then restart your DHCP daemon. This is usually either

/etc/init.d/dhcp restart

or

/etc/init.d/dhcpd restart

If you use the installation parameter approach you can add the following to
/etc/systemimager/pxelinux.cfg/syslinux.cfg (and re-run si_mkclientnetboot) or using the
--append "STRING" option with si_mkautoinstalldisk or si_mkautoinstallcd:

FLAMETHROWER_DIRECTORY_PORTBASE=9000

5.6. Autoinstall your clients!
Boot your clients from your favorite autoinstall media (network, floppy, CD, or hard drive) and off you
go.

5.7. A Detailed Walk Through the Process

1. When the imageserver is started, the /etc/init.d/systemimager-server-flamethrowerd
init script is run, which starts the Flamethrower daemon (flamethrowerd). flamethrowerd, in turn,
starts up udp-sender processes according to /etc/systemimager/flamethrower.conf.

2. A new image is pulled using si_getimage, and the information in flamethrower.conf is updated.

30

Chapter 5. HOWTO Use Flamethrower for Multicast Installs

3. Prior to starting each cast, flamethrowerd will check to see if flamethrower.conf has been
updated. If it has, it will be re-read. This allows new images to be made available dynamically,
without having to restart flamethrowerd.

4. When an autoinstall client comes up, it checks to see if
FLAMETHROWER_DIRECTORY_PORTBASE is set. This can be set via "option-143" in
dhcpd.conf, or via the FLAMETHROWER_DIRECTORY_PORTBASE variable in a local.cfg
file. The default value for FLAMETHROWER_DIRECTORY_PORTBASE is 9000.

If FLAMETHROWER_DIRECTORY_PORTBASE is set, then the autoinstall client requests
directory information from the flamethrower daemon running on port
FLAMETHROWER_DIRECTORY_PORTBASE. The imageserver waits a few seconds for other
clients to join the directory information multicast, then casts out the directory information. The
directory information is a directory of files, one per module, each containing the multicast details
needed to access that particular module.

5. When the client receives the Flamethrower directory information, it will look up the multicast
information for each of the following modules, then sequentially join the multicast for each:

a. BOEL binaries (additional binaries that the autoinstall client needs to continue the install)

b. The entire autoinstall scripts directory

6. After receiving the scripts cast, it will find it’s autoinstall script, and execute it. The autoinstall script
will proceed with the install by sequentially joining the multicasts for the appropriate image, then
for any and all override directories.

7. When all casts are received, the client completes the install according to the autoinstall script by
configuring the boot loader, and performing it’s post install action.

8. When the flamethrowerd daemon completes the cast session for a module, it checks for changes in
the flamethrower.conf file, re-reads it if necessary, then listens for new clients asking to join the
cast for that module. Casts of seperate modules can happen in parallel.

5.8. See also
See http://wiki.systemimager.org/index.php/Multicast
(http://wiki.systemimager.org/index.php/Multicast) for details.

31

Chapter 6. HOWTO Use OpenSSH for Secure
Installs

6.1. Using OpenSSH for Secure Installs (requires
SystemImager v3.8.x or higher)

SystemImager supports the ability to capture and install images over ssh. You might want to use this
feature if you are doing installations in an unprotected network, or over the public Internet. Some amount
of scalability and installation time degredation is expected, and we currently do not support secure
multicast (flamethrower) installations.

See http://wiki.systemimager.org/index.php/SSH (http://wiki.systemimager.org/index.php/SSH) for
details.

6.2. Image server configuration
Uncomment the following 2 lines in /etc/systemimager/rsync_stubs/10header:

#hosts allow = 127.0.0.1
#hosts deny = 0.0.0.0/0

Re-run si_mkrsyncd_conf:

si_mkrsyncd_conf

Restart the rsync daemon:

/etc/init.d/systemimager-server-rsyncd restart

In this way connections to the rsync exported images will be forbidden except from localhost (this will
be used by sshd after the SSL tunnel will be opened).

6.3. Client-driven approach
First of all you need to create a boot package (kernel + initrd.img) and include the SSH private key
directly into the initrd.img. For this the boot over PXE is strongly discuraged in this case, because kernel
and initrd.img are not encrypted during the transmission to the clients with TFTP. To create the boot
package with BOEL run the following command:

mkdir /tmp/boot-package
si_mkbootpackage --destination /tmp/boot-package --kernel \

32

Chapter 6. HOWTO Use OpenSSH for Secure Installs

/usr/share/systemimager/boot/i386/standard/kernel --filesystem cramfs \
--ssh-key ~foo/.ssh/id_dsa --yes

Remember to replace i386 with the architecture of your clients to get the correct kernel (e.g. x86_64). Or
if you want to use UYOK:

mkdir /tmp/boot-package
si_mkbootpackage --destination /tmp/boot-package --image YOUR_IMAGE \
--ssh-key ~foo/.ssh/id_dsa --yes

This command will create the boot package in /tmp/boot-package and it will include the SSH private key
of the user "foo" into the initrd. To enable the passwordless login for for the user "foo" run the command:

$ cat ~foo/.ssh/id_dsa.pub >> ~foo/.ssh/authorized_keys

In a similar way you can also use the --ssh-key with si_prepareclient in your golden client. In this case
you don’t need to create the boot package in your image server, simply use kernel + initrd.img generated
by si_prepareclient.

6.4. Configure the clients to use SSH transport
(client-driven)

Create an autoinstall CD with the following command:

si_mkautoinstallcd --out-file /tmp/boot-package/systemimager.iso --kernel \
/tmp/boot-package/kernel --initrd /tmp/boot-package/initrd.img --append \
"MONITOR_SERVER=172.16.36.1 MONITOR_CONSOLE=yes SKIP_LOCAL_CFG=y SSH=y"

Remember to replace the address of your monitor server (if you want to use it) and add all the needed
installation parameters. If you prefer to use an auto-install USB drive, instead of a CD run:

si_mkautoinstalldisk --device YOUR_USB_DEVICE --kernel \
/tmp/boot-package/kernel --initrd /tmp/boot-package/initrd.img --append \
"MONITOR_SERVER=172.16.36.1 MONITOR_CONSOLE=yes SKIP_LOCAL_CFG=y SSH=y" \
--yes

Then boot the clients with the autoinstall CD / USB drive (PXE is not recommended with client-driven
SSH) and enjoy the secure auto-installation.

6.5. Server-driven approach
As well as client-driven approach also the server-driven way needs the creation of a client boot package.
In this case instead of including the SSH private key (used to connect to the image server), we must
include the authorized_keys file, because it’s the image server that will open the SSH tunnels to the
clients. To create a boot package with BOEL run the following command on your image server:

mkdir /tmp/boot-package
si_mkbootpackage --destination /tmp/boot-package --kernel \

33

Chapter 6. HOWTO Use OpenSSH for Secure Installs

/usr/share/systemimager/boot/i386/standard/kernel --filesystem cramfs \
--authorized-keys ~foo/.ssh/id_dsa.pub --yes

Remember to replace i386 with the architecture of your clients to get the correct kernel (e.g. x86_64). Or
with UYOK:

mkdir /tmp/uyok-boot-package
si_mkbootpackage --destination /tmp/boot-package --image YOUR_IMAGE \
--authorized-keys ~foo/.ssh/id_dsa.pub --yes

After that you will find the kernel+initrd.img to be used for the imaging into the destination directory
(/tmp/boot-package).

6.6. Configure the clients to use the SSH transport
(server-driven)

Be sure to define the SSH=y installation parameter (for more details see:
http://wiki.systemimager.org/index.php/Installation_Parameters). IMPORTANT: server-driven approach
is the most secure way to deploy images on the clients, because they never access directly to the image
server. For this reason you can forbid every kind of access to the image server (using hosts deny policy or
via iptables or using your preferred firewall...). Moreover, since you have to distribute only a public key
to the clients, you can ignore the warning of the client-driven approach to not use boot over PXE: in this
case the initrd.img doesn’t contain private informations and it can be transmitted unencrypted without
problems!

6.7. Wait that the clients become ready to accept SSH
connection

Wait for the following message, that must appear on the clients console:

Started sshd. You must now go to your imageserver and issue
the following command:

si_pushinstall --hosts ${HOST_OR_IP}.

If you are not able to physically watch the clients console you can use monitoring features and check this
message from the SystemImager virtual console (see http://wiki.systemimager.org/index.php/Monitoring
for more details). The message above means that the clients are ready to accept SSH connection from the
image server, so just run the command suggested on the console. You can use also host ranges with
si_pushinstall to open all the SSH tunnels in a single shot. For example if you have to image from
node01 up to node20 run:

si_pushinstall --hosts node01-node20

Then boot the clients with the autoinstall CD / USB drive or via PXE and enjoy the secure
auto-installation.

34

Chapter 7. Monitoring clients installation with
SystemImager

7.1. Overview
This document shows how to use the monitoring features of SystemImager. Monitoring allows to watch
the details of the installation phases for all your clients. Monitoring is organized in two main
components:

• si_monitor: a process that runs on the monitor server and collect clients data

• si_monitortk: the perl-Tk based monitoring GUI.

7.2. Setting up the monitor server
On the monitor server (typically is the same machine of the image server) simply run:

/etc/init.d/systemimager-server-monitord start

This will start the si_monitor daemon. The data sent by the clients will be collected by si_monitor and
stored in the XML /var/lib/systemimager/clients.xml. If you cannot execute X applications in
your monitor server you can simply periodically look at that file to monitor the installations.

Never run si_monitor manually! Always use systemimager-server-monitord script!

Then simply run si_monitortk to launch the monitoring GUI.

7.3. Enabling clients to send monitoring data
Define the following parameters to the kernel boot options of the clients:

• MONITOR_SERVER=IP|HOSTNAME: IP address or hostname of the monitor server

• MONITOR_CONSOLE=yes|no: enable or disable full console view, if enabled it’s possible to follow
all the installation session of the clients (stdout and stderr) in the monitoring interface (default is no)

35

Chapter 7. Monitoring clients installation with SystemImager

Usually you need to define the parameters in /etc/systemimager/pxelinux.cfg/syslinux.cfg.
This works both if you are installing via network boot or by an autoinstall boot media (CD, USB disk,
etc.). For example a monitoring-enabled configuration can be the following:

LABEL systemimager
KERNEL kernel
APPEND vga=extended initrd=initrd.img root=/dev/ram MONITOR_SERVER=192.168.1.1 MONITOR_CONSOLE=yes

Remember to re-run si_mkclientnetboot (for PXE booting), si_mkautoinstallcd (for autoinstall CD
booting) or si_mkautoinstalldisk (for autoinstall USB drive booting) to rebuild the configuration files or
boot media to accept the new parameters defined above.

7.4. Troubleshooting

7.4.1. Clients do not appear
If you don’t see the clients in the monitoring interface when they boot-up check the following issues:

• Do you have a firewall in your image server that filter the port 8181? The clients use that port to
contact the image server.

• Try to use the IP address of the monitor server instead of the hostname.

• Are you sure the clients are using the correct boot parameters? (remember that you can check the
parameters directly from the clients if you have the access to the real console looking in
/proc/cmdline)

• Try to increase the verbosity of the si_monitor log changing the value LOGLEVEL=2 into
LOGLEVEL=3 in /etc/init.d/systemimager-server-monitord and restart the monitor
daemon (/etc/init.d/systemimager-server-monitord restart); all the logs are stored in
/var/log/systemimager/si_monitor.log).

7.4.2. I’ve not a X server to see si_monitortk interface...
Clients can be monitored also if an X server is not available, for example if you’re connected remotely
via ssh on the image server and you’ve not enabled the X11 forwarding. In this case simply look at the
file /var/lib/systemimager/clients.xml. It’s an XML, but the clients and the attribute names are
quite nmemonic. You can periodically cat the file or write your own console monitoring scripts. If you
wrote a nice ncurses or a console interface feel free to post the patch to the sisuite-devel
(mailto:sisuite-devel@lists.sourceforge.net) list.

36

Chapter 8. HOWTO Distribute configuration file
across a SystemImager cluster

8.1. Install SystemImager v3.9.4 or higher.
Follow the steps described in the installing section for details.

8.2. Overview
si_pushoverrides is a tool to distribute configuration files from the image server to the clients or group of
them, using the SystemImager overrides. The command accepts a list of group or node names as
arguments and concurrently synchronizes the content of the associated overrides to them using a
server-drien approach (the image server copies the files to the clients using rsync over ssh to exploit the
advantages of bandwidth optimization and security).

si_clusterconfig is a tool to manage and show the cluster topolgy. In show-mode the command accepts as
argument a list of hostnames, host-ranges and/or host-group, it resolves them in the equivalent list of
hostnames and prints them to stdout. The edit-mode can be interactive (option -e) or batch (option -u). In
interactive edit-mode si_clusterconfig opens an editor in your terminal that allows to modify the client
group definitions and their properties using a XML syntax. In batch edit-mode it only parses the
pre-defined XML configuration and refresh the opportune SystemImager internal configuration files.

8.3. Define the cluster topology
Run the command si_clusterconfig -e as root. There are 3 levels of hierarchy for the overrides:

• global override: to be distributed to all the nodes,

• group override: to be distributed only in a group of nodes,

• node override: to be distributed in a single node.

The files in the global override are distributed to all the nodes. If there is a file with the same path
and the same name in a group override, the group override wins. If there is a file with same path and
same name in a node override and a group override, then the node override wins.

The required elements are:

• the name of your image server: <master></master>

37

Chapter 8. HOWTO Distribute configuration file across a SystemImager cluster

• the name of the global group (that identify all the clients): <name></name>

• the name of the global override (to be distributed in all the clients): <override></override>

8.4. A simple example

<xml>
<master>master1</master>
<name>all</name>
<override>all</override>
<group>

<name>Login</name>

<override>Login</override>
<node>node001</node>
<node>node002</node>

</group>
<group>

<name>Compute</name>

<override>Compute</override>
<node>node003-node010</node>

</group>
</xml>

This is a 10-nodes cluster definition. The hostname of the image server is master1; the cluster has 2 login
nodes (node001 and node002) that use the override called Login and 8 compute nodes (node003,
node004, node005, node006, node007, node008, node009 and node010), that use the override called
Compute.

Example 8-1. Example 1: distribute the passwd, shadow and group to all the nodes

Create the files:

cp -p /etc/passwd /var/lib/systemimager/overrides/all/etc/passwd
cp -p /etc/shadow /var/lib/systemimager/overrides/all/etc/shadow
cp -p /etc/group /var/lib/systemimager/overrides/all/etc/group

From master1 run the command:

si_pushoverrides -v all

Basically when you specify the global override all the nodes defined in cluster.xml are updated
accordingly to the hierarcy of the overrides.

38

Chapter 8. HOWTO Distribute configuration file across a SystemImager cluster

Example 8-2. Example 2: distribute different access.conf to Login and Compute nodes

Allow root to login on "Login" nodes only from the local domain,
/var/lib/systemimager/overrides/Login/etc/security/access.conf:

-:root:ALL EXCEPT LOCAL .localcluster.domain.org

Disallow direct login on "Compute" nodes for non-privileged users,
/var/lib/systemimager/overrides/Compute/etc/security/access.conf:

-:ALL EXCEPT root wheel:ALL

From master1 run the command:

si_pushoverrides -v Compute Login

Example 8-3. Example 3: close the second login node (node002) to non-privileged users

/var/lib/systemimager/overrides/node002/etc/security/access.conf:

-:ALL EXCEPT root:ALL
-:root:ALL EXCEPT LOCAL .localcluster.domain.org

From master1 run the command:

si_pushoverrides -v node002

8.5. See also
See http://wiki.systemimager.org/index.php/File_distribution
(http://wiki.systemimager.org/index.php/File_distribution) for details.

39

Chapter 9. FAQ (Frequently Asked Questions)

Q: Where are the images stored?

A: The images are stored in /var/lib/systemimager/images.

NOTE: If you are short on disk space in this location, move the directory to another location:

mv /var/lib/systemimager/images /home/systemimager_images

Then create a soft link to the new directory.

ln -s /home/systemimager_images /var/lib/systemimager/images

Q: How do I make an autoinstall CD?

A: Run the si_mkautoinstallcd command on the image server.

Q: How do I make an autoinstall USB disk?

A: Run the si_mkautoinstalldisk command on the image server.

Q: When I pass options from dhcp (option-100, etc), the client appears to get and try to use a
hexadecimal number instead. How do I make it pass a dotted-quad IP address instead?

A: The hexadecimal address is actually the hexadecimal representation of your IP address (you can
verify this with the gethostip command). This is normally a quoting issue. Add quotes around the IP
address in the configuration file.

Q: I’ve got si_netbootmond running, but it isn’t working. Why?

A: In order for si_netbootmond to do it’s thang, you must have the rsync daemon running:
"/etc/init.d/systemimager-server-rsyncd start".

Q: How do I configure my server to net boot ia64 clients?

A:

1. Install tftp (tftp-hpa >= 0.28 is recommended) on your boot server.

2. Configure inetd or xinetd to enable tftp.

• To configure inetd, find the tftp entry in /etc/inetd.conf and change it to:

tftp dgram udp wait root /usr/sbin/in.tftpd -v -v -v -s /var/lib/tftpboot

Change "/usr/sbin/in.tftpd" to be the full path to your tftp server, if you installed it in a different
directory.

The -v’s aren’t strictly required but make the tftp server more verbose, which makes it easier to
diagnose problems.

Finally, send a HUP signal to inetd (this causes it to reload its configuration file). # killall -HUP
inetd

40

Chapter 9. FAQ (Frequently Asked Questions)

• To configure xinetd, change:

service tftp
{

socket_type = dgram
protocol = udp
wait = yes
user = root
server = /usr/sbin/in.tftpd
server_args = -s /home/tftp
disable = no

}

to:

service tftp
{

socket_type = dgram
protocol = udp
wait = yes
user = root
server = /usr/sbin/in.tftpd
server_args = -s /var/lib/tftpboot -r blksize
disable = no

}

Finally, send a USR2 signal to xinetd (this causes it to reload its configuration file).

3. Configure your DHCP server so that it provides boot information to the client. Be careful when
setting up your DHCP server - if it is set to hand out dynamic addresses and is located on a public
subnet, it may give bogus information to other machines on the network, possibly destroying data on
those machines. It is recommended that you use a private subnet for doing network installs. If
possible, you should also configure your DHCP server to only answer requests from known hosts
based on the MAC address.

Add an entry for the boot client in /etc/dhcpd.conf

host mcmuffin {
hardware ethernet 00:30:6e:1e:0e:83;
fixed-address 10.0.0.21;
filename "elilo.efi";

}

4. Copy elilo.efi from an IA-64 machine to your tftpboot directory and make them world readable. This
file is usually found in a subdirectory under /boot/efi or in /usr/lib/elilo. It can also be found in the
elilo package in IA64 distributions.

You also must create an elilo.conf file in your tftpboot directory. A sample one is provided in
/usr/share/doc/systemimager-doc/examples, or you can type in the one below.

5. Edit /var/lib/tftpboot/elilo.conf:

#

41

Chapter 9. FAQ (Frequently Asked Questions)

Sample elilo.conf for netbooting ia64 systemimager clients
#
Inside your tftp directory you may also want to do this:
#
mkdir -p ia64/standard
cp /usr/share/systemimager/boot/ia64/standard/* ia64/standard/
#
default=systemimager

image=ia64/standard/kernel
label=systemimager
initrd=ia64/standard/initrd.img
root=/dev/ram
append="vga=extended ramdisk_blocksize=4096 console=tty0"
#
Uncomment APPEND line below, and comment out APPEND line above, to use
both monitor (tty0) and first serial port (ttyS0) as console at the
same time.
#
NOTE: Be sure your serial port speed is appropriate (57600, 9600, etc.)
#
#append="vga=extended ramdisk_blocksize=4096 console=tty0 console=ttyS0,9600n8"
read-only

If ABCDEFGH is the client’s IP address in hex, elilo.efi will use the first one of the following files
that it finds as its configuration file:

• ABCDEFGH.conf

• ABCDEFG.conf

• ABCDEF.conf

• ...

• A.conf

• elilo.conf

You can use the ipcalc utility, which is available in the syslinux package, to calculate the hex
representation of an IP address in dotted quad form.

6. Configure the client to support TFTP booting.

a. Boot to EFI

b. Enter the Boot option maintenance menu

c. Add a boot option

d. Press return on the line saying "Load file [Acpi/.../Mac()]"

e. Call the entry Netboot or something similar

f. Save and exit, Netboot is now available in the boot menu.

42

Chapter 9. FAQ (Frequently Asked Questions)

Q: How do I set up my autoinstall clients so that the console is available via the serial port?

A: si_mkautoinstallcd and si_mkautoinstalldisk support an -append option, allowing you to specify
additional options for the autoinstall kernel, including serial console options. For example:
si_mkautoinstallcd -out-file autoinstall.iso -append "console=ttyS0"

Q: Does the DHCP server have to be on the image server?

A: No. If you are using DHCP, you can use "option-140" and set its value to the IP address of the image
server. If you use si_mkdhcpstatic to configure your dhcpd.conf file, it will ask you for the IP address
of your image server and add the appropriate entry for you.

Because this is not the official use for option-140, work is being done to either get an official number
assigned or use a number from the private number range.

Q: With which distributions does SystemImager work?

A: SystemImager is designed to work with _any_ distribution. Post imaging configuration is handled by
System Configurator, which uses a "footprinting" technique to identify the style of system configuration
files used, and to configure networking, boot, and similar information accordingly. If you find a
distribution that SystemImager does not work with, please file a bug report.

Q: How do I add a driver for a special card to the autoinstall kernel?

A: If you have hardware that requires a driver that was not included in the standard flavor boot package,
you can build a custom boot package with UYOK feature. See
http://wiki.systemimager.org/index.php/UYOK (http://wiki.systemimager.org/index.php/UYOK)).

Q: Do I have to do anything to prepare a client from which I will get an image?

A: Yes, you should install the systemimager-client package. If this package is already installed, simply
run the si_prepareclient command prior to running si_getimage from the image server.

You should also add any software, configure any files, and do any tweaking to customize the system to
your specifications.

Q: Can I use the autoinstalldisk or autoinstallcd on more than one machine?

A: Yes. The autoinstall media is generic and can be on any machine you want to autoinstall.

Q: How do I push an image to a client?

A: Starting with version 3.8.0, you can use the si_pushinstall command, which opens an SSH tunnel
from the image server to the clients. Then each client downloads the image using the SSH tunnel opened
by the image server. This is the most secure approach to install clients over insecure networks.

Q: How do I pull an image to a client?

A: If you ran si_mkdhcpserver to configure your dhcp information, and if you answered all the
questions you were asked when you did ran si_getimage, including the hostnames and IP addresses, then
all you have to do is boot your client with any one of the following three forms of autoinstall media:

43

Chapter 9. FAQ (Frequently Asked Questions)

1. autoinstallcd - it takes slightly little time to boot and is more durable, but you have to have a CD
burner and clients that can read CD-R’s)

2. autoinstalldisk - it takes slightly little time to boot, but requires that the BIOS of your clients support
boot over USB devices.

3. network boot - boot time is dramatically, but this method requires PXE capable network cards in the
clients and additional server-side configuration.

See the entries for si_mkautoinstallcd and si_mkautoinstalldisk in the command reference chapter in
this manual for more information.

Q: How does an autoinstall client know which image to install?

A: In order to better understand the answer, begin by reading the steps the autoinstall client goes
through:

1. Boots off the autoinstallmedia

2. Gets an IP address from DHCP

3. Determines the IP address of the image server via DHCP

4. Requests a hosts file from the image server

5. Finds its hostname in the hosts file based on its IP address

6. Requests a script from the image server based on its hostname (for example: www237.sh)

7. Executes this script.

The script in question is typically a soft link pointing at the $image.master script that was dynamically
created when you ran si_getimage. This script explicitly states which image to pull from the image
server. Open it and take a look.

These scripts and the $image.master script can be found in /var/lib/systemimager/scripts.

Q: What if I want to assign static IPs to my clients?

A: You can. si_getimage will ask you if you want to assign static IPs.

Q: I want to use DHCP to assign static IPs to my clients, but I don’t want to have to enter my 1000 mac
addresses manually. What can I do?

A: SystemImager comes with the si_mkdhcpstatic utility. As you boot your client systems, the DHCP
server will assign addresses sequentially. By initially booting your systems in the order you want them to
receive their IP addresses, you can ensure that they get the IP address you want them to have.

After booting your systems, run si_mkdhcpstatic. It will re-write your /etc/dhcpd.conf file,
associating each client’s MAC address with its host name. You should then restart your dhcpd daemon.
Subsequently, each time your clients request an IP address via DHCP, they will always be assigned their
appropriate static IP address.

Note: The client’s hostname is used, instead of an explicit IP address, so that you simply have to change
the hosts file on the DHCP server (or DNS, NIS, etc.) to change the IP address that that client recieves.

44

Chapter 9. FAQ (Frequently Asked Questions)

Note: Assigning static IP addresses by DHCP is the author’s preferred method for administering IP on a
large number of systems.

Q: What kind of performance can I expect?

A: Ole Holm Nielsen, Department of Physics, Technical University of Denmark reports:

In our SystemImager installation, we can install 18 clients simultaneously with 1.8 GB images in 6
minutes. Please see The NIFLHEIM SystemImager Page
(http://www.fysik.dtu.dk/CAMP/Niflheim/systemimager.html). Our server has Gigabit network, 2 GB of
RAM, dual Intel Xeon 2.4 GHz, whereas the clients have Intel P4 and 100 Mbit Ethernet.

James Braid reports:

From a Celeron 700/512Mb server over 100Mbit ethernet, we manage to do a ~1Gb image in about 7 -
10 min. The disks are 5x 120Gb Seagate Barracuda V in one LVM set (non striped), with a ReiserFS
filesystem.

Q: How do I update an image on the image server?

A: There are two ways to update an image on the image server:

1. Make the changes to one of your clients and run the si_getimage again.

- You can specify the same image name, in which case the current image will be updated (only
changes are pulled across).

- Or you can specify a new image name and have a form of revision control. (This method is highly
recommended)

Note: Every time si_getimage is run, it recreates the $image.master script. If you have
customized your $image.master script, be sure to save it before running si_getimage again.

2. Modify the files directly. You can simply cd into the appropriate image directory and edit the files
there, or (recommended) you can cd into the image directory and run ’chroot . sh’. This will change
your working root directory to the root of the image you want to manipulate. You can then run rpm
and other commands on the image and not have to worry about getting confused and damaging the
image server. When you are done, simply type exit and you will be returned to your normal shell.

Q: How do I update a client to match an image?

A: Once you have updated an image on the image server, you can then update your clients to reflect it.
(You do not need to do a complete re-autoinstall.) You will find the command, si_updateclient, on your
clients, which takes as its parameters the name of the image server and the name of the image you want
to update the client to. Run si_updateclient -help to get more information about this command.

Use the revision control method recommended in the "How do I update an image on the image server?"
FAQ to bring your production environment back to a known state after doing an si_updateclient to a test
image (i.e. do an si_updateclient to the last working image).

45

Chapter 9. FAQ (Frequently Asked Questions)

The file /etc/systemimager/updateclient.local.exclude on your clients is used to exclude
files and directories from being updated by the si_updateclient command. You can modify it to suit your
own environment.

Q: What is the updateclient.local.exclude file used for?

A: It is used by the si_updateclient command. See the "How do I update a client to match an image?,"
FAQ for more information.

Q: How can I use SystemImager to update a small set of files? For instance, I apply a security patch and
I want all boxes to reflect that change.

A: Use the si_updateclient command on the client.

1. Choose one of the following methods to update the image on the server:

a. apply the patch to the image directly

b. apply the patch to a client and then do another si_getimage specifying the same imagename
(won’t take long and will update the image)

c. apply the patch to a client and then do another si_getimage specifying a different imagename.
This is preferred as it allows for revision control.

2. Run si_updateclient on the clients that you want to update. Execute si_updateclient -help to get
the syntax.

Q: Is there a log file where autoinstall client status is kept?

A: Yes. SystemImager logs can be found on the image server in the directory
/var/log/systemimager

Q: What other software is SystemImager based on?

A: SystemImager is mostly written in Perl, and makes use of the following software:

• busybox

• bc

• devfsd

• ISC dhcp

• discover

• dosfstools

• e2fsprogs

• jfsutils

• xfsprogs

• Linux kernel

46

Chapter 9. FAQ (Frequently Asked Questions)

• parted

• pxelinux

• rsync

• syslinux

• raidtools

• reiserfsprogs

• systemconfigurator

• uClibc

Also be sure to take a look at System Installation Suite (SIS), which includes SystemInstaller,
SystemImager, and System Configurator. SystemInstaller is a tool that allows you to install images
directly to a SystemImager image server. System Configurator, which is also used by the standard
SystemImager release, performs configuration of target machine uniquenesses such as IP addresses,
network cards, and initial RAM disks needed to boot clients after installation.

Q: What’s an override directory?

A: An override directory is a directory that gets copied over to your target machines after the main
image is transferred. All contents in the override directory are copied over to the root of the target
machine’s new filesystem. All file attributes are replicated, including directories, permissions, and
ownership. This allows you to "over-ride" files in the image. Override directories live in
/var/lib/systemimager/overrides/.

Simply edit the master autoinstall script and change the overrides variable to include the appropriate
override directory. For example, you could change OVERRIDES="my_image" to
OVERRIDES="my_image-ide".

If using the same overrides on all of your machines, you don’t have to change the autoinstall script.
Simply put the files that you want to override in the overrides directory that has the same name as your
image, and proceed.

You can also use multiple override directories, which are used in the order that you specify them -- each
directory overriding the previous directories. You can use this methodology in a highly complex
environment where slight variations exist between several classes of machines but where they all start
with the same base image. For example, OVERRIDES="my_image-ide web_app".

Q: How do I expand a filesystem?

A: See "How do I change the size of a partition?"

Q: How do I change the size of a partition?

A:

1. Open your autoinstallscript.conf file in your favourite text editor.

47

Chapter 9. FAQ (Frequently Asked Questions)

The default autoinstallscript.conf file created by si_prepareclient lives in the
/etc/systemimager directory in your image.

2. Find the <disk> section where dev is set to the disk that holds the partition you want to change.

3. Find the <part> entry where num is the number of the partition in question.

4. Change size to the new partition size, keeping in mind that if the size you specify is not sufficient to
hold the files stored there, the autoinstall will fail.

NOTE: Each <disk> section can use either MB (megabytes) or % (percentages) to specify partition
sizes. See man autoinstallscript.conf for more information.

5. Run si_mkautoinstallscript to create a new autoinstall script using the new parameters.

NOTE: By default, si_mkautoinstallscript uses the autoinstallscript.conf file located in your
image’s ./etc/systemimager directory. See man si_mkautoinstallscript and man
autoinstallscript.conf for more information.

Q: How do I change the filesystem(s) that my target machine(s) will use?

A:

1. Make sure that the kernel in your image supports the filesystem(s) you want to use.

2. Open your autoinstallscript.conf file in your favorite text editor.

NOTE: The default autoinstallscript.conf file created by si_prepareclient lives in the
./etc/systemimager directory in your image.

3. Find the <fsinfo> entry where mp (mount point) is set to the filesystem that you want to change.

4. Change fs to the filesystem you want to use. See man autoinstallscript.conf for a list of supported
filesystems.

You must understand the capabilities of your chosen filesystem. Depending on which one you use,
you may also need to change the options used to mount the filesystem, which are set by the options
entry. If you choose unsupported options, your autoinstall may fail.

In all known cases to date, it has not been necessary to change the fs entries in the <disk> section
when changing filesystem types. The fs entries in the <disk> section don’t actually determine the
filesystem that will be created on those partitions, but the parted tool that SystemImager uses for
creating disk partitions requires that argument.

5. Run si_mkautoinstallscript to create a new autoinstall script using the new parameters. By default,
si_mkautoinstallscript uses the autoinstallscript.conf file located in the ./etc/systemimager
directory in your image. See man si_mkautoinstallscript and man autoinstallscript.conf for more
information.

Q: How do I change the disk type(s) that my target machine(s) will use?

A:

1. Make sure that the kernel in your image has drivers for the disk types you want to use.

48

Chapter 9. FAQ (Frequently Asked Questions)

2. Run si_mkautoinstallscript --autodetect-disks ... to create a new autoinstall script that will be able
to automatically detect disk types at run-time during the imaging of your clients.

3. An alternative method is to manually modify autoinstallscript.conf and re-run
si_mkautoinstallscript.

Q: Can I use a single image across machines with differing disk or partition configurations?

A: Yes. Be sure to use --autodetect-disks with si_getimage or si_mkautoinstallscript if you have
different disk types in your clients and create a different autoinstallscript.conf and master script
for each partitioning schema you want to use.

9.1. See also
Consult the troubleshooting guide on the SystemImager web site at
http://wiki.systemimager.org/index.php/Troubleshooting and the online FAQ at
http://wiki.systemimager.org/index.php/FAQ for details.

49

Chapter 10. Troubleshooting

10.1. What is the "ETHER_SLEEP" variable, and when
should I adjust it?

The ETHER_SLEEP variable specifies the number of seconds that your autoinstall client(s) should wait
before trying to talk to the network. The default is zero (0), to make installs go faster, as a timeout is not
normally needed.

Certain networking equipment, notable switches, may refuse to pass traffic from a new interface that has
appeared on a switch port until after a 30+ second delay. This delay is usually a settable option (if your
switch even has this capability). Whether or not it is set on your switches is vendor and/or site specific.

If you encounter problems during an autoinstall, such as your autoinstall client not recieving an IP
address via DHCP: a) you find that when you ask for a DHCP address from the command line, you get
one. b) you manually configure the network interface and can then contact the imageserver; then you
may want to change the ETHER_SLEEP variable.

Both of these symptoms can often be explained by the 30+ second timeout passing prior to the manual
intervention.

If you decide to change the ETHER_SLEEP variable, a value of 35 has been found to work in most cases
(ETHER_SLEEP=35). ETHER_SLEEP can be set in a local.cfg file or by modifying the ./etc/init.d/rcS
script in the BOEL source code.

NOTE: The 30+ second timeout at the switch begins with the interface on your autoinstall client is made
active (Ie: driver loaded), and is not necessarily tied to when the interface is configured with an IP
address.

10.2. si_getimage fails with a "Failed to retrieve
/etc/systemimager/mounted_filesystems from <golden
client>" message.

Two known issues cause this error:

1. Your firewall may be blocking the rsync port. Some Red Hat releases (and possibly other
distributions) provide firewall rules as part of a default installation. The ipchains and iptables
utilities have a -L that will print a list of active rules.

2. rsync relies on the ability to do a reverse lookup of the remote machine. If you don’t have reverse
DNS setup in your cluster, you can add entries for each machine in your cluster to the /etc/hosts
file on each machine. (Adding an entry for your image server in your golden client’s /etc/hosts
file should be sufficient for using si_getimage.

50

Chapter 10. Troubleshooting

10.3. My client autoinstallation/update hangs, crashes, or
is ridiculously slow.

Goran Pocian reported an instance of unacceptable si_updateclient performance that went away when
he upgraded from kernel 2.2.17 to 2.2.18.

He also noted that if you mount an NFS filesystem after executing si_prepareclient, si_getimage will
retrieve its contents. As this can heavily increase network load, it can also cause bad performance.

Brian Finley reported other possible causes:

Every once in a while, someone reports some mysterious hanging or transfer interruption issue related to rsync.
I had a chance to speak with Andrew Tridgell in person to discuss these issues.

We found two known issues that could be the source of these symptoms. One is a known kernel issue, and one
is an rsync issue. The kernel issue is supposedly resolved in 2.4.x series kernels, (SystemImager has not yet
been "officially" tested with 2.4.x kernels) and may not be present in all 2.2.x series kernels (I believe).

The rsync bug will be fixed in the rsync 2.4.7 release (to happen "Real Soon Now (TM)"). The rsync bug is
caused by excessive numbers of errors filling the error queue which causes a race condition. However, until
rsync 2.4.7 has been out for some time, I will still recommend using v2.4.6 unless you specifically experience
one of these issues.

Here’s a hack that seems to work for Chris Black. Add "--bwlimit=10000" right after "rsync" in each rsync
command in the <image>.master script.

Change: "rsync -av --numeric-ids $IMAGESERVER::web_server_image_v1/ /a/"
To: "rsync --bwlimit=10000 -av --numeric-ids $IMAGESERVER::web_server_image_v1/ /a/"

Here are some tips on diagnosing the problem:

• If you get an error message in /var/log/messages that looks like:

Jan 23 08:49:42 mybox rsyncd[19347]: transfer interrupted (code 30) at io.c(65)

You can look up the code number in the errcode.h file which you can find in the rsync source code.

• To diagnose the kernel bug: Run netstat -tn. Here is some sample output (from a properly working system):

$ netstat -tn
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 1 0 192.168.1.149:1094 216.62.20.226:80 CLOSE_WAIT
tcp 1 0 192.168.1.149:1090 216.62.20.226:80 CLOSE_WAIT
tcp 1 0 192.168.1.149:1089 216.62.20.226:80 CLOSE_WAIT
tcp 0 0 127.0.0.1:16001 127.0.0.1:1029 ESTABLISHED
tcp 0 0 127.0.0.1:1029 127.0.0.1:16001 ESTABLISHED
tcp 0 0 127.0.0.1:16001 127.0.0.1:1028 ESTABLISHED
tcp 0 0 127.0.0.1:1028 127.0.0.1:16001 ESTABLISHED

The symptoms are:

• Machine A has data in its Send-Q

• Machine B has no data in its Recv-Q

• The data in machine A’s Send-Q is not being reduced

51

Chapter 10. Troubleshooting

What’s happening is:

1. One or both kernels aren’t honoring the other’s send/receive window settings (these are dynamically
calculated)

2. The result is the kernel(s) aren’t getting data from machine A to machine B

3. rsync, therefore, isn’t getting data on the receive side

4. The process appears to hang.

• Details about the rsync bug:

What happens:

1. A large number of errors clogs the error pipe between the receiver and generator

2. All progress stops.

3. Again, the process appears to hang.

I hope this information helps...

A possible solution, suggested by Robert Berkowitz, is to add --bwlimit=10000 to the rsync options in
the rsync initscript.

10.4. My autoinstallcd doesn’t boot.
Download and install a newer syslinux RPM.

10.5. My client failed to autoinstall, and when I run an
rsync command on it manually, it takes forever for the
image server to respond.

Be sure that the image server can look up the client’s hostname based on its IP address. The easiest way
to do this is to have entry in the image server’s /etc/hosts file for the client system.

10.6. My client fails with the error: "chroot: cannot

execute systemconfigurator: No such file or

directory"

This failure is most commonly associated with a mismatch between the version of SystemImager you
used to create your image and the version of SystemImager you used to create the corresponding .master
script.

52

Chapter 10. Troubleshooting

As of SystemImager 2.0, SystemConfigurator is used to make final configuration changes to an image.
SystemConfigurator is executed from within the image, so it must be installed within the image on the
image server. To insure this, SystemConfigurator must be installed on any golden client before an image
is pulled from it. If you have images that were pulled from golden clients that did not have
SystemConfigurator installed, you can install SystemConfigurator directly into the image on the
imagserver.

Example 10-1. Installing SystemConfigurator into an Image on an Image Serer

1. Download the latest SystemConfigurator package for your system from
http://sourceforge.net/projects/systemconfig.

2. Copy the SystemConfigurator package into your image directory. For example:

cp systemconfigurator-1.10-1.noarch.rpm /var/lib/systemimager/images/my_image/tmp

3. Chroot into the image directory and install the package.

chroot /var/lib/systemimager/images/my_image bash

rpm -Uvh /tmp/systemconfigurator-1.10-1.noarch.rpm

exit

10.7. My client completes the autoinstall process
successfully, but I get an "Invalid Partition Table" error
upon reboot, and Linux never boots.

SystemImager 2.0.x and earlier didn’t maintain the bootable flag in the partition table. This worked fine
in most cases, but in some cases this leads to an unbootable system. To confirm that this is the problem,
boot your system from rescue media, and set the bootable flag on your boot partition using cfdisk or
another partitioning tool. If this allows your system to boot, then you must upgrade SystemImager and
regenerate your autoinstallscript(s). If for some reason you can’t upgrade, then check the following:

• Be sure that you are using the latest version of SystemImager and that you are using the
autoinstalldiskette image that comes with that version. Note that the version numbers may not match.
See the VERSION file.

10.8. See also
Consult the troubleshooting guide on the SystemImager web site at
http://wiki.systemimager.org/index.php/Troubleshooting for details.

53

	SystemImager® v4.1.6 Manual
	Table of Contents
	List of Examples
	Chapter 1. Introduction to SystemImager®
	1.1. SystemImager Overview
	1.2. Who Should Use This Guide
	1.3. How SystemImager Works
	1.3.1. Supported Distributions
	1.3.2. System Requirements

	1.4. Glossary of Terms
	image
	override
	image server
	client
	golden client
	transport
	autoinstall media
	autoinstall script
	sigetimage(8)
	siprepareclient(8)
	siclusterconfig(8)
	simkdhcpserver(8)
	simkdhcpstatic(8)
	simkbootserver(8)
	siupdateclient(8)
	sipushoverrides(8)

	Chapter 2. Installing SystemImager
	2.1. How Does it Work?
	2.2. Obtaining SystemImager
	2.3. Selecting A Machine To Use As An Image Server
	2.4. Installing an Image Server
	2.5. Selecting A Machine To Use As A Golden Client
	2.6. Creating an Image on the Golden Client
	2.7. Installing SystemImager Client Software on a Golden Client
	2.8. Creating an Image from scratch
	2.9. Upgrading SystemImager
	2.9.1. Regenerating autoinstallscripts
	2.9.2. Migrating Customizations of the /etc/systemimager/rsyncd.conf file to SystemImager 3.0.0
	2.9.3. Regenerating boot media
	2.9.4. What happened to the binary tarballs?

	Chapter 3. Using SystemImager
	3.1. Installation Procedures Overview
	3.1.1. Detailed Installation Instructions
	3.1.2. SystemImager Tools
	3.1.2.1. the siprepareclient command
	3.1.2.2. The sigetimage command
	3.1.2.3. Autoinstall scripts
	3.1.2.4. The siaddclients and siclusterconfig commands
	3.1.2.5. Additional Installation Information
	3.1.2.6. How to Update an Image

	Chapter 4. HOWTO Use BitTorrent for peertopeer Installs
	4.1. Install SystemImager v3.7.4 or higher.
	4.2. Configure the BitTorrent transport on the image server.
	4.3. Configure the clients to use the BitTorrent transport.
	4.4. Important notes
	4.5. A Detailed Walk Through the Process
	4.6. See also

	Chapter 5. HOWTO Use Flamethrower for Multicast Installs
	5.1. Install SystemImager v3.2.x or higher
	5.2. Install the Flamethrower Package and its Dependencies
	5.3. Run sigetimage, simvimage, or sicpimage
	5.4. Start up your Flamethrower daemon
	5.5. Tell your autoinstall clients to use Flamethrower
	5.6. Autoinstall your clients!
	5.7. A Detailed Walk Through the Process
	5.8. See also

	Chapter 6. HOWTO Use OpenSSH for Secure Installs
	6.1. Using OpenSSH for Secure Installs (requires SystemImager v3.8.x or higher)
	6.2. Image server configuration
	6.3. Clientdriven approach
	6.4. Configure the clients to use SSH transport (clientdriven)
	6.5. Serverdriven approach
	6.6. Configure the clients to use the SSH transport (serverdriven)
	6.7. Wait that the clients become ready to accept SSH connection

	Chapter 7. Monitoring clients installation with SystemImager
	7.1. Overview
	7.2. Setting up the monitor server
	7.3. Enabling clients to send monitoring data
	7.4. Troubleshooting
	7.4.1. Clients do not appear
	7.4.2. I've not a X server to see simonitortk interface...

	Chapter 8. HOWTO Distribute configuration file across a SystemImager cluster
	8.1. Install SystemImager v3.9.4 or higher.
	8.2. Overview
	8.3. Define the cluster topology
	8.4. A simple example
	8.5. See also

	Chapter 9. FAQ (Frequently Asked Questions)
	9.1. See also

	Chapter 10. Troubleshooting
	10.1. What is the "ETHERSLEEP" variable, and when should I adjust it?
	10.2. sigetimage fails with a "Failed to retrieve /etc/systemimager/mountedfilesystems from golden client" message.
	10.3. My client autoinstallation/update hangs, crashes, or is ridiculously slow.
	10.4. My autoinstallcd doesn't boot.
	10.5. My client failed to autoinstall, and when I run an rsync command on it manually, it takes forever for the image server to respond.
	10.6. My client fails with the error: "chroot: cannot execute systemconfigurator: No such file or directory"
	10.7. My client completes the autoinstall process successfully, but I get an "Invalid Partition Table" error upon reboot, and Linux never boots.
	10.8. See also

