
SystemImager and BitTorrent: a peer-to-peer
approach for Large-Scale OS Deployment

Brian Elliott Finley (finley@anl.gov)
Erich Focht (efocht@hpce.nec.com)
Bernard Li (bernard@vanhpc.org)
Andrea Righi (a.righi@cineca.it)

Copyright © 2007

SystemImager is a Registered Trademark of Brian Elliott Finley.
BitTorrent is a Registered Trademark of BitTorrent, Inc.
Linux is a Registered Trademark of Linus Torvalds.
All trademarks are the properties of their respective owners.

This paper describes the integration of BitTorrent with SystemImager, as a
transport protocol, for the deployment of OS images to large numbers of
clients. Traditionally, the classical client-server model does not scale well, thus
large scale deployments using SystemImager with its default transport protocol
need to be staged. An alternative scalable and reliable transport protocol
needs to be implemented and BitTorrent seems to be a natural fit.

Introduction

A brief overview of SystemImager

SystemImager is software that automates Linux installs, software distribution,
and production deployment [7].

One key feature of SystemImager is that it is distribution-agnostic and is able to
support heterogeneous hardware. This allows the deployment of any kind of
Linux distribution (standard or even customized) to any kind of target machine.
The main goal of the project is to make deployment of large numbers of
computers easy. Typical environments include computer labs and render farms,
but it has proven particularly popular in clustered computing environments,
such as grid and high performance computing.

Another design feature that facilitates Linux distribution and hardware
independence is that SystemImager works with file based (rather than block
based) system images. An image is stored as a directory hierarchy of files
representing a comprehensive snapshot of a machine, containing all the files
and directories from the root of that machine's file system. Images can be
acquired in multiple ways, including retrieval from a sample system (golden
client), or by direct generation on the SystemImager server using third-party
tools1.

1 Tools can be distribution-independent, like SystemInstaller (http://systeminstaller.sf.net), or provided by
the Linux distribution: like YaST for SuSE, Debootstrap for Debian, yum for Red Hat/Fedora, etc.

http://systeminstaller.sourceforge.net/
http://systeminstaller.sourceforge.net/
http://systeminstaller.sourceforge.net/

The standard method of image creation involves cloning of a pre-installed
machine, the golden-client. In this way, the user can customize and tweak the
golden-client's configuration according to his needs, verify it's proper operation,
and be assured that the image, once deployed, will behave in the same way as
the golden-client. Incremental updates are possible by syncing an updated
golden-client to the image, then syncing that image to deployed machines
using the si_updateclient command.

Images are hosted in a central repository on a server, called the image-server,
and they can be distributed among the clients using different transports: rsync
(the default), multicast (via Flamethrower1), SSL encrypted rsync (using a SSH
tunnel), and now via BitTorrent.

BitTorrent

BitTorrent[2] is a peer-to-peer file distribution protocol that minimizes the
burden on a server by distributing bits and pieces to clients (peers) in a swarm
such that they can in turn distribute the pieces they have to others who need
them. Developed by Brahm Cohen and written in the python language, this
protocol is in wide use on the Internet for distributing large files. It is especially
popular for distributing Linux ISOs and computer game demos because it is
quite good at handling the huge spikes in the number of people wanting the
files when they are first released. This protocol lowers the bandwidth costs of
the provider and offloads costs and resources to the users wanting the content.

BitTorrent works by first having the content provider create a metafile (called
the torrent file) which contains checksum/hash information regarding the file(s)
as well as the location (URL) of the tracker which keeps track of connecting
peers and file transfer progress. Once the torrent file is created, the tracker is
started at the specified location and the content provider starts uploading the
content in a process known as “seeding”. When content seekers connect to the
tracker, they will download bits and pieces of the file from the seeder.

Peers start uploading the incoming bits to other peers as soon as they receive
them and eventually switch to “seeding” mode when they have successfully
received the entire file. Peers who have not yet achieved “seeder” status are
known as leechers.

While not optimized for distributing files on a LAN, BitTorrent was still proven to
provide much better performance and reliability than the rsync and multicast
transports when used with larger numbers of clients. Support for multicast is
provided via the Flamethrower program, however multicast[8] is not always
stable and switch hardware from multiple vendors does not always work well
together.

Therefore, a TCP based network protocol that can scale well is a more attractive
solution, especially in complex heterogeneous infrastructures, like big server
farms or Grid Computing[4] environments.

1 http://freshmeat.net/projects/flamethrower/

http://freshmeat.net/projects/flamethrower/

Comparison of the SystemImager protocols

The most frequently used protocol with SystemImager is rsync[9], thanks to
its flexibility and the provided mechanisms of remote file synchronization. The
design of this protocol respects the classical client-server approach, so it has a
scalability problem: each client's bandwidth can be evaluated as U s

N
, where Us

is the upload bandwidth of the image server and N is the total number of the
clients that are imaging at the same time. Us is limited by the server's network
bandwidth as well as the file system read performance. The drawbacks of this
protocol are the performance limitations and the reliability in massive
installations. A large number of clients imaged simultaneously can saturate the
bandwidth of the image server resulting in the failure of a part or the whole
installation. However rsync remains the best choice in installations with a small
number of clients (< 15), due to its simplicity and very low overhead of the
protocol, as compared to the other SystemImager transports.

Another approach is to use UDP over IP-multicast. A server-driven multicast
strategy (integrated in Flamethrower1) theoretically scales very well compared
to the classical client-server approach. In this case the image server pushes out
the image only once and all clients belonging to the multicast group receive
each UDP packet at the same time. In this case the download bandwidth of
each client is equal to US. However, UDP over IP-multicast requires a highly
reliable network. In fact, if a client misses a piece of the image for any reason,
it might be forced to wait until the rest of the image has been sent and join the
next transmission round.

To reduce the probability of error due to packet loss and to increase robustness
of the protocol, the multicast transport uses an FEC2 approach to transmit
redundant data to the clients in a unidirectional mode. With FEC, clients need
not acknowledge receipt of packets, nor can the request re-transmission of
certain packets.

Each slice of data is divided in interleave stripes and for each stripe
redundancy FEC packets are added. Striping is a way to increase performance,
but since redundant data must be transmitted the theoretical bandwidth US is
not fully exploited. In a typical configuration FEC uses 8 streams of redundant

data. In this case the expected download rate of the clients is limited to
U s

8
3.

A peer-to-peer protocol (like BitTorrent) allows each client to join the
distribution of the image at any time, requesting the chunks it needs in any
order, and leave the process when it can no longer contribute to the entire
distribution.

1 http://freshmeat.net/projects/flamethrower/

2 Forward Error Correction: the sender adds redundant data to its messages, which allows the receiver
to detect and correct errors without the need to ask the sender for additional data
(http://en.wikipedia.org/wiki/Forward_error_correction).

3 Without FEC experimental results demonstrated that with a typical image of 2.5GB the 8-10% of the
clients miss at least one packet.

http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Forward_error_correction
http://freshmeat.net/projects/flamethrower/

With this approach the bandwidth of the image server Us is a bottleneck only
during the start-up phase of the imaging (when the clients have not yet
received any piece of the image)[6].

Suppose that x(t) is the number of downloaders at a certain time t, and y(t) is
the number of clients in seed-only state; we define the steady-state of

BitTorrent when
dx t
dt

=0 and
dy t
dt

=0 . Moreover we define N as the total

amount of imaging clients.

In steady-state of a homogeneous environment the download rate of each
client is not limited by Us. Using the simple fluid model of Qiu and Srikant [3]
the total upload rate is given by:  xt yt , with is the effectiveness ofη
the file sharing and is the upload bandwidth of a generic peer.μ

If x and y are the steady-state values of x(t) and y(t) respectively, the
aggregated bandwidth can be evaluated as:  xy . Since there is only one
seed (the image server), supposing a perfect effectiveness (= 1) andη
supposing that all the clients are downloading at the same time, the theoretical
limit of the upload bandwidth can be reformulated as: N1 .

Hence the BitTorrent transport allows also to exceed the limit of Us (obtained
with multicast) when 

U s

N1
. If clients and image server are homogeneous

machines, = μ Us and the upper bound can be defined as U sN1 . In this

case the available download bandwidth for a client is U s⋅
N1
N , but,

obviously, in a homogeneous environment with a symmetric bandwidth the
value is limited to Us (the same value of multicast).

Moreover, due to the reliability of the BitTorrent protocol, the installation can
successfully complete even under temporary network failure conditions.
Reliability of each chunk (bit) is guaranteed by the BitTorrent protocol, since all
pieces downloaded are checked using SHA1 hashes[10] .

Integrating BitTorrent in SystemImager

The main drawbacks of BitTorrent used as a SystemImager's transport are that:

1) the protocol is not designed to handle every element of a filesystem (special
device files, symbolic links, file permissions, file ownership, timestamps),

2) it needs an auxiliary protocol to distribute torrents to the clients.

Point 1) can be resolved mapping the whole image on a single regular file. This
is possible for example by tarring up the image directory prior to the file
transfer, or to create the image filesystem on a regular file mounted in
loopback. We opted for the tar approach, because in this way it is not
necessary to pre-allocate the maximum space for each image (needed by the
loopback file).

The problem 2) can be easily resolved using rsync to distribute the torrents to
the clients. In fact torrents are very light compared to the images (more than
an order of magnitude smaller) and with a typical image the scalability limits of
rsync are not met.

To optimize the use of this transport the target is to reduce the total installation
time (or deployment time). We define the total installation time as
T=max {ti }, i=1..N , with ti the time to deploy and execute the OS image on the

client i.

The installation time for a generic client can be expressed in the form ti=iK i

where i is the time to download the image, that depends on the download
bandwidth and Ki is constant1. The value i is directly dependent on the
download rate, that must be not limited by the total upload rate of the other

peers: U tot t= ∑
i=1

xtyt

Us .

The important condition is that U tot t≥c⋅xt , where c is the maximum
download rate of a client. It is essential to define an explicit condition to know
when the contribution of a peer in the total upload bandwidth is no longer
useful; in this case the peer can leave the swarm and reboot with the installed
OS.

A simple solution could be to use the completion of the download as the exit
condition for a client. Unfortunately this is not the optimal solution for all the
cases: every client that is in the seed-only state can be a potential uploader for
the other clients and leaving the swarm when the upload bandwidth is still used
can introduce latencies and overheads in the installation of the other clients:
clients must reconnect to the tracker to discover the new topology. Moreover,
the seed-only state is particularly important when the clients are not
homogeneous. In fact a client with a higher upload bandwidth is the best
candidate to remain in the seed-only state after the download.

1 This is the time needed by the BIOS, the reboot, the driver detection, the disk partitioning, etc.

Choosing a BitTorrent implementation

Besides the original python implementation of BitTorrent, there have been
various attempts to re-write/improve upon the original protocol namely in C,
C++, Java, etc. Since we are looking for performance, we decided to search for
C implementations of BitTorrent; a C application can also be easily compiled
and included in either the initial RAM disk for SystemImager deployment or the
BOEL1 binaries. The original python implementation of BitTorrent can also be
integrated with SystemImager, but in this case the python interpreter must be
shipped with the client installation package or the scripts must be converted
into executables.

Initial tests proved that the standard client was the best choice in terms of
performance, compared to the other clients, so the natural choice was to
include this implementation in the BOEL installation package.

The first approach was to include the python interpreter into BOEL. This
solution has the advantage to provide a very powerful tool (python) into the
BOEL environment, but it has some critical disadvantages. The most important
is memory consumption. The python interpreter, modules, libraries, etc. take a
lot of space in the basic installation package, and when imaging a large number
of clients the transfer of this package can constitute the main bottleneck. A
better approach is to exploit the python feature to freeze the scripts into
common executables2. In this way the space needed by the BitTorrent binaries
can be significantly reduced3, since only the required components and libraries
are included in the BOEL binaries (instead of the complete python
environment).

With this approach the BitTorrent scripts can be considered as standard ELF4
executables and they can be easily shipped into a initial RAM disk (initrd). This
also makes it possible to use BitTorrent in the early stages of the boot process,
reducing the bottleneck incurred by the use of common client-server protocols
to transfer only a minimal startup environment and the BitTorrent binaries.

Thanks to the better scalability, the lower memory usage and the easy
integration in the BOEL initial RAM disk the last approach was adopted.

The tool used to freeze the python scripts is cx_Freeze5. A generic “frozen”
script is converted into a base executable which contains both the code of the
script itself and the code of the required python modules6.

1 BOEL (Brian's Own Embedded Linux) is the in memory OS environment used by
SystemImager during an install.

2 http://www.py2exe.org/

3 The python environment increases the size of the basic installation package from 20 up to 30MB. The
frozen scripts allow to reduce this limit to 5-6MB.

4 ELF (Executables and Linking Format) - http://en.wikipedia.org/wiki/ELF_file_format

5 http://starship.python.net/crew/atuining/cx_Freeze

http://starship.python.net/crew/atuining/cx_Freeze
http://en.wikipedia.org/wiki/ELF_file_format
http://en.wikipedia.org/wiki/ELF_file_format
http://en.wikipedia.org/wiki/ELF_file_format
http://www.py2exe.org/

Moreover, the needed libraries are placed into a destination directory and
hardcoded paths1 are replaced to obtain a full standalone application.

Overview of the installation process

The following is a schematic overview about the design of typical installation
steps, both on the image server and on a generic client.

Deployment stages on the image server:

1. tracker start-up (the main component of the whole installation),
2. tarballs generation (the images to be deployed are tarred up and

optionally gzipped),
3. torrents generation,
4. first seeder start-up (the first seeder runs many torrents distributions, in

order to handle multiple images, BOEL binaries, overrides, etc. with a
single seeder process2).

Deployment stages on the client side:

1. torrent files are downloaded using an alternative protocol (rsync or via
scp),

2. BOEL binaries are distributed via BitTorrent,
3. image deployment via BitTorrent,
4. overrides deployment via BitTorrent.

Staging the image tarball

Unlike the multicast Flamethrower approach, BitTorrent cannot take advantage
of “tarpipe”3 for the image deployment. As a result, a file staging area is
necessary to temporary store the full tarball prior to extraction into the client’s
file system.

The optimal solution in terms of performance is to stage the tarball in memory
if the clients are equipped with sufficient RAM. In this case there is no overhead
of the disk I/O while downloading the tarball, so the entire download process is
not limited by the potential poor I/O performance of a single peer.

However, it is quite usual to have an OS image to exceed Gigabytes of data.
Therefore it is necessary to identify a staging pool on the client file system.

6 Needed modules are identified by the “import” statements inside the scripts.

1 Dynamic library load path (also known as “rpath” and “runpath”).

2 This is done via the command btlaunchmany (or launchmany-console in newer releases).

3 The multicast deployment can be seen as a stream of data, since the transmission of the packets
respects a precise order. With BitTorrent there is not the concept of stream; every chunks are
transmitted out-of-order, so this is not possible to parallelize the tarball distribution and its extraction
through a pipe.

A simple auto-detection routine is used to find a proper pool comparing the size
of the tarball and the size of the available space of the mounted partitions in
the clients1. The preferred pool is always the “RAM disk” of the client (via
tmpfs), followed by the /tmp disk partition.

After the transfer, the tarball is extracted in the root of the client file system.
The process of extraction is entirely asynchronous among the clients and
during extraction they can continue to seed the image and the other tarballs.

Experimental results

Deployment time

To compare the speed and scalability of different transports we ran a number of
tests in a real environment, installing subsets of the BCX cluster at CINECA2.
The subsets, ranging in number from 1 to 150 nodes, always constitute a
homogeneous environment.

Heuristically we found that 15 is the critical number of clients to choose rsync
over BitTorrent. Under this value rsync is always the best choice. Multicast, on
the other hand, works perfectly in terms of scalability, but the overhead of the
protocol introduces a noticeable delay with this number of clients. Moreover the
time of installation with multicast presents a remarkable variance from an
experiment to another and, as expected, the speed does not depend on the
total number of clients.

Looking at the results we found that 4.5min is the mean value of the time to
install 15 clients, both with rsync and BitTorrent transports. The results were
always the same in all the instances of this experiment (the time from an
installation to another differs in terms of < 10 sec).

The mean value with multicast is 16min, but this value is quite dispersive (the
time of installation ranges from 10 to 22 min on different instances of the same
experiment). This high variance is probably due to other traffic in the network,
since the switches were not isolated during the experiments and with multicast
small differences in the background noise seem to strongly influence the final
results.

The second test was focused to analyze the performance with a big installation,
using a subset of 50 clients. In this case results provide evidence that there is a
greater gap in the time of installation between BitTorrent and rsync transports
(Figure 1).

1 Plus a breathing room of 100MB. This value has been heuristically determined and it seems to be
enough to cover a lot of possible conditions.

2 http://www.cineca.it/en (appendix A contains the details of the installation environment).

http://www.cineca.it/en
http://www.cineca.it/en
http://www.cineca.it/en

Rsync needed up to 13 minutes to complete the installation of all the clients
and the image server reached its limits in terms of load and bandwidth usage.
With more than 50 clients the image server starts to swap and some clients can
fail the installation. This value can be considered an upper bound of the rsync
transport and above this limit the installation must be split in different stages
(this value is totally dependent on the CPU/RAM of server, and also the speed
of the network adapter).

BitTorrent, instead, was perfectly scalable: it needed the same time (4-5min) to
install all the 50 clients. Also the multicast transport obtained perfect
scalability, but in terms of performance it was consistently inferior compared to
BitTorrent. Since rsync is not usable to install more than 50 clients at the same
time and since multicast performance is constant even with increasingly more
clients, the last experiments were focused only to explore the limits of
BitTorrent. Anyway, repeating the installation with 100 clients needed the same
time: 4-5min to install the whole cluster. Only with 150 clients did the total time
of installation increased slightly to 6min.

With multicast and the above mentioned number of clients, the probability for a
node to miss at least one packet begins to be significant. It is not rare that one
or more multicast sessions must be re-instantiated to send the image again to
the faulty clients, doubling or tripling the total time of installation. This supports
the requirement to have a clean, isolated and homogeneous environment for
use with multicast. On the other hand, the upper bound of BitTorrent can be
found only by saturating the bandwidth of the switches in the network.

Only in the last experiment does the weakness of BitTorrent emerged: each
client is a potential uploader for the others at any time. When a client leaves

Figure 1: Installation time comparison. Rsync installation needs to be manually staged with more
than 50 clients, so the installation time grows more than linear (there is a fixed time to boot the
clients and prepare the installation). Multicast scalability is perfect theoretical, but with more than
100 clients the probability to miss a packet is very high. In this case clients need at least 2 sessions
(the advantage respect to rsync is that this staging is done automatically by SystemImager and it is
not manual). BitTorrent, instead, is very close the perfect scalability (horizontal line).

the swarm, after the complete installation of the image, it automatically closes
the connections to the other leechers. This adds some latencies on the
remaining nodes, because they need to reconnect to the tracker, ask for an
updated list of the available peers, and instantiate new connections to continue
the download. In huge installations (experimentally with more than 100 nodes)
some peers can be affected by this latencies and the total installation time can
be delayed. In this case performance can be improved allowing each client to
leave the swarm only when it is no more useful for the other peers.

This behaviour can be heuristically modelled by adding a seeding-only wait
time and stopping the BitTorrent client only when the upload rate reaches a
minimum threshold1. Below this value the peer is considered free to leave the
swarm and it can reboot with the freshly installed image. This adds a
distributed delay on each single installation, but in huge environments the total
time to install the whole cluster can be strongly improved.

Bandwidth analysis

The monitoring features of SystemImager2 allow to have a close approximation
of the real download rate on each client during the imaging process.

The global bandwidth utilization can be considered the optimal parameter to
evaluate the superiority of a protocol, because it is strictly dependent upon the

1 This can be done using the installation parameter BITTORRENT_SEED_WAIT=y
(http://wiki.systemimager.org/index.php/Installation_Parameters). On a gigabit network we found
heuristically the optimal value of 500KB for the minimum threshold.

2 http://wiki.systemimager.org/index.php/Monitoring

Figure 2: An installation of 50 clients with rsync. The download bandwidth of each client is inversely
proportional to the total number of clients that are downloading the image at the same time. The upload
bandwidth of the image server is the bottleneck of the whole process.

http://wiki.systemimager.org/index.php/Monitoring
http://wiki.systemimager.org/index.php/Installation_Parameters
http://wiki.systemimager.org/index.php/Installation_Parameters
http://wiki.systemimager.org/index.php/Installation_Parameters

throughput and the total installation time.

As we can see in Figure 2 the download bandwidth on each client with rsync is
inversely proportional to the total number of nodes that are imaging
simultaneously. At the beginning and at the end of the transfer only few clients
join the imaging group and the bandwidth reaches its maximum value. In the
middle of the transfer the download rate is constant and stable at the lower
values.

With multicast (Figure 3) the download rate is constant at a generic time for all
the clients1. The rate is not perfectly constant in the time because of the
overhead (or the optimizations) of the tarpipe process, the load on the image
server and the udp-send/udp-receive processes: these can change the rate of
the packets sent. Moreover, the multicast transport cannot be considered a
time-invariant system2 and the bandwidth graph presents differences also
between instances of the same experiment.

1 The small differences in the download rates between the clients are only noise in the measurement
process.

2 http://en.wikipedia.org/wiki/Time-invariant_system

Figure 3: An installation of 50 clients using the multicast transport. The download rate is constant for all
the clients at a generic time.

http://en.wikipedia.org/wiki/Time-invariant_system

With BitTorrent (Figure 4) the pattern is the same in all the experiments: at the
beginning of the transfer the aggregated download bandwidth of all the peers
is limited by the upload bandwidth of the single seed on the image server. First
blocks are randomly distributed among the clients and some blocks may be
transferred before starting to exploit the other peers' bandwidth.

Only in this start-up phase and at the end, when the successfully installed
peers leave the installation, the upload bandwidth of the image server is the
bottleneck of the installation (Figure 5). Between these two phases each peer
can exploit the upload bandwidth of the others, so the only limitation is due to
the saturation of the network and the load on the image server is strongly
reduced respect to the other transports.

Conclusion

The research of an alternative protocol capable of exceeding the limits of the
classic client-server models for the installation of big clusters or complex grid-
computing environments led to the exploration of peer-to-peer protocols.

The project characteristics and the adaptability of BitTorrent in the most
heterogeneously interconnected environments constituted the motivation for
the analysis, the implementation and the experiments with a new transport
based on it. The experiments in a real production environment have put in
evidence the performance advantages of BitTorrent in massive installations,
compared to the other transports (rsync and multicast).

Figure 4: Installation of 50 clients with BitTorrent. The download bandwidth is limited by the upload
bandwidth of the image server in the start-up (when the image server is the only seeder) and in the final
phase (when the peers complete the installation and begin to leave the swarm). In the middle of the
installation the bandwidth usage is greatly improved respect to the other protocols.

Also in terms of reliability the BitTorrent-based transport has showed
interesting results. In particular with high load conditions of the network, result
that other protocols (in particular reference to rsync) have not been able to
guarantee exceeding critical thresholds in the dimension of the number of
nodes installed at the same time.

Future work

BitTorrent has proven to be a viable protocol for rapid deployment of OS images
to client nodes without substantial load on the image server. The speed of the
deployment and the support for heterogeneous hardware provides the means
to deploy virtual clusters which are built on the same resource pool, where it is
possible to dynamically re-initialize workspaces on user demand.

The current work was done without any modifications of the protocol. However,
further investigation can be taken to optimize the code for better performance
in a controlled local network environment. The BitTorrent client can be further
enhanced to support special files and also to carry meta-data regarding each
individual file – e.g. timestamps, ownership, permissions, etc. This removes the
overhead of creating a tarball of the image directory every time the image is
modified.

So far we have only discussed using BitTorrent for the initial deployment of the
image. It is also interesting to investigate how we can use BitTorrent to
facilitate the massive update of clients (pushing changes/differences); this
research can then be used to design a general-purpose file
distribution/synchronization mechanism based on BitTorrent. The current
experiments focus on creating differential tarballs containing the updates. This
approach opens a path to image version management.

Figure 5: Installation of 150 clients with BitTorrent. In huge installations some clients may be affected by
a delay caused by the peers that leave the swarm at the end of the transfer.

The current BitTorrent algorithm still has a client-server component: the tracker
is still a single point of failure – when the tracker goes down, peers can lose
contact with other and the file transfer can be halted. Work is currently being
done to “de-centralize” BitTorrent in newer protocols such as eXeem. These
new protocols will be analyzed for their suitability for integration with
SystemImager as another file transfer transport.

Additional work must be done to enhance the security in terms of
authentication, authorization and encryption to transfer data from the image
server to the clients over insecure networks.

The BitTorrent protocol does not offer native security functionalities, so
interesting improvements can be made implementing authentication
mechanism to download the torrents and encrypting the tarballs before
distributing them to the clients.

The p2p approach can be exploited also at the image server side to create
distributed and redundant repositories of images. Multiple image servers can
contain their own images and publish them via BitTorrent using a central
tracker. The image tracker will forward the clients to the opportune image
servers where the requested images are available. Having this grid of image
servers would be the key ingredient to realize huge, scalable and reliable
repositories of images.

References

[1] http://wiki.systemimager.org

[2] B. Cohen, Incentives Build Robustness in BitTorrent, 2003

[3] D. Qiu and R. Srikant, Modeling and performance analysis of BitTorrent-like
peer-to-peer networks, 2004

[4] I. Foster and C. Kesselmann, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufman Publishers Inc, 1998

[5] A.R. Bharambe, C. Herley, V.N. Padmanabhan, Analyzing and Improving
BitTorrent Performance, 2005

[6] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, X. Zhang, Measurements,
Analysis, and Modeling of BitTorrent-like Systems, 2005

[7] S. Dague, System Installation Suite – Massive Installation for Linux, 2002

[8] B. Quinn, K. Almeroth, RFC 3170: IP Multicast Applications: Challenges and
Solutions, 2001

[9] A. Tridgell, The Rsync Algorithm, 2000

[10] D. Eastlake, P. Jones, US Secure Hash Algorithm 1 (SHA1), 2001

http://wiki.systemimager.org/
http://wiki.systemimager.org/
http://wiki.systemimager.org/

Appendix A:
Details of the installation environment

Following the technical information about the installation environment used for
the experiments:

Image server

Model: IBM e326m
RAM: 4GB
CPU: 2 AMD Opteron(tm) Processor 252 2.6GHz
Network card: Broadcom Corporation NetXtreme BCM5704 Gigabit Ethernet
OS: RHEL4 U3 (x86_64)

Clients (from 15 to 150)

Model: IBM BladeCenter LS21
RAM: 8GB
CPU: 2 Dual-Core AMD Opteron(tm) Processor 2216HE 2.4GHz
Network card: Broadcom Corporation NetXtreme II BCM5706S Gigabit Ethernet

Network

IBM BladeCenter LS21 switches + 2 external CISCO Catalyst 6513 switches

Image: RHEL4 U3 (x86_64)

Size of the image: 2.1GB
Size of the gzipped tarball of the image: 606MB

	SystemImager and BitTorrent: a peer-to-peer approach for Large-Scale OS Deployment
	Introduction
	A brief overview of SystemImager
	BitTorrent
	Comparison of the SystemImager protocols

	Integrating BitTorrent in SystemImager
	Choosing a BitTorrent implementation
	Overview of the installation process
	Staging the image tarball

	Experimental results
	Deployment time
	Bandwidth analysis

	Conclusion
	Future work
	References
	Appendix A:
Details of the installation environment

